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░ 1. INTRODUCTION  

The understanding of the instantaneous motions of turbulence is problematical owing to frequent unexpected 

changes. The central process in turbulent flows is convection induced by the instantaneous fluid velocity. 

Molecular diffusion fails to afford an impressive contribution to spatial transport at a high Reynolds number, and 

therefore convection controls the transference of momentum, chemical species, and enthalpy. Statistical measures 

hold well for the description of turbulent motion.  

A statistical description of turbulence comprises a probability distribution for stationary flows to determine the 

nature of turbulent velocity fluctuations. To study the statistical properties of turbulence Monin and Yaglom [1] 

enunciated the velocity structure functions (VSF) which are directly related to the probability density function 

(PDF) of the local dissipation rate. Therefore, an appropriate model for the PDF of the dissipation rate completely 

describes the statistics of turbulent velocity. 

The presence of intermittent behaviour of turbulent Lagrangian velocity statistics was discovered in various 

investigations on particle tracking [2, 3]. The massive progress in experimental procedures [4, 5] of measuring 

particle trajectories has caused a speedy development in the dynamics of tracer particles in incompressible flows. 

Some intriguing features of Lagrangian turbulence such as the notable role of coherent structures or almost 

singular structures compared to the Eulerian description have been revealed by numerical simulations [6], 

multifractal, and PDF-modeling [7,8].  

In Arn`eodo et al. [9] an elegant collection of eight data sets from experiments and numerical simulations on 

turbulent velocity statistics along particle trajectories was carried out. The multifractal theory, which was extended 

to the dissipative scales and the Lagrangian domain, was seen to hold well for the studies in the intermittency of 

velocity statistics that were investigated. Intermittency attributes the multi-time correlations to the 

turbulence-rousing force. In effect, it was used in modelling the trajectory of a fluid particle by a multifractal 
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random walk [10] wherein long-time correlations and the incidence of large amplitude events at small scales 

dominate the motion. Based on this, the multifractal properties of the Lagrangian velocity may be explained. 

Lagrangian intermittency is associated with the nature, distribution, and time evolution of the dynamical structures 

entrenched in the flow. Such intermittencies were studied by using the velocity structure functions, which submit 

to the Kolmogorov similarity theory (KST). In fine, the central quantities of concern in the statistical theory of 

Lagrangian turbulence are the pdfs of the fluid particles [11, 12, 13, 14, 15].  

░ 2. LAGRANGIAN DEPICTION OF TURBULENCE 

The notion of temporal velocity increments along particle trajectories, ( ) ( ) ( )L L L

i i i
v v t v t       which is the 

Lagrangian analogue of the Eulerian spatial increments of the velocity field can be introduced as an extension of 

the K41 phenomenology, originally advanced in the Eulerian framework. Here, v
L
 encodes the Lagrangian 

velocity, measured for each fluid parcel along its trajectory. The Statistics are assumed to be only dependent on the 

time increment, ζ (i.e. stationary). The multi-scale temporal dynamics of Lagrangian temporal may be examined 

by observing the spanning statistical behaviours at different values of ζ. The multi-scale classification is largely 

realized by considering the dependence of the statistical moments of Lagrangian increments with the time 

increment, ζ . These define the Lagrangian function structures: ( ) ( )L L p

p i
G v   . 

2.1. Equations of motion 

Let X(t;v,y) be a transformation that maps the initial position X(t = 0; v, y) = y of a hypothetical tracer particle with 

initial velocity v onto its position X at later times t > 0. The equations of motion of a single particle are of the form 

[12]: 

                 ( ; )
( ; )

d t
t

dt


X
U

v,y
v,y

                                                                                                                       (1) 

                 ( ; )
( ; )

d t
t

dt


U
A

v,y
v,y

,                                                                                                                     (2) 

where in (1) d/dt is the time derivative along the particle’s trajectory and the particle’s acceleration. In (2) d/dt is 

the Lagrangian or material time derivative that may relate to the partial derivatives of the Eulerian fields (see [16]) 

                U
( ) ( ( ), ) ( ( ), ) ( ( ), )i i i

j

j

d u u
t t t u t t t t

dt dt x

 
 


X X X

  .                                                                                   (3) 

The acceleration, A in (2) can be expressed in terms of the Eulerian pressure and the velocity field estimated at the 

location of the particle. The particle’s position and velocity in the Eulerian sense, having the velocity field u(x, t), 

related to the Lagrangian sense reads: 

                  X
( ) ( ) ( ( ), )i

i i

d
t U t u t t

dt
  X

 ,                                                                                                                 (4) 

and in a similar mode, the particle’s acceleration A(t) reads 

                 2

2

U
( ) ( ) ( )i i

i

d d X
A t t t

dt dt
 

.                                                                                                                       (5) 
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In the Lagrangian mode, Navier–Stokes equations can be written in the form: 

                2U 1
( ) ( ( ), ) ( ( ), ),i i

i j j

d up
t t t t t

dt dx x x





 

 
X X

                                                                                                   (6) 

                
0.i

i

u

x






                                                                                                                                          (7) 

2.2. Lagrangian pdf. 

Let x0 = {x01, x02, x03} be Lagrangian coordinates and let t0 be a reference time. Therefore x
L
(t, x0) denotes the 

position at time t of the fluid particle that is at x0 at time t0 [i.e. x
L
(t0, x0) = x0; where for each Eulerian variable U(x, 

t) say, the corresponding Lagrangian variable is denoted by the superscript (or subscript) L ]. From Pope [17] we 

get 

                   L

0 0
( , ) ( , ),t t tU x U x                                                                                                                  (8) 

Consequently, for the Eulerian velocity, x
L
 is the solution to the initial value problem, 

                  
L

L0

0

L

0 0

( , )
( , ),

( , )

t
t

t

t

 
 

 
 

x x
U x

x x x

.                                                                                                         (9 a, b) 

Considering a constant (density) property flow [17, 18, 19], the Lagrangian joint pdf of the fluid particle properties 

at time t, conditional upon their properties at time t0, for the event  

                   L

0 0
( , )  ( , )t t L

{U x V, x x x}                                                                                                        (10) 

is given by 

                   0 0
, ; ,

L
g tV x V x ,                                                                                                                        (11)     

subject to the condition U
L
(t0,x0) = V0. The relation (12) is analogous to the (one-point, one-time Eulerian) joint 

pdf of velocity gu(V; x, t). In general, the joint pdf of the events         

                L

0 0
{ ( , )  ( , ) ; }

r r r r
t t r = 1,2,...,N L

U x V , x x x                                                                                  (12)   

for N times, subject to the initial condition, U
L
(t0, x0) = V0,  is  

                   , -1 -1 1 1 1 1 0 0
, ; : , ; ; , ; ,

L N N N N N N N
g t t ...; t


V x V x V x V x  .                                                       (13) 

░ 3. FLUID-PARTICLE VELOCITY 

The analysis of one component of the fluid-particle velocity U
L
(t) leads to a stochastic differential equation (SDE) 

that represents the Langevin equation, U
*
(t). The crux of the velocity stochastic turbulence models is in the 

decomposition of a particle’s acceleration in the form 

               ( ) ( )
d

t t
dt

  
U

A A ,                                                                                                                     (14) 
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where ξA(t) and ηA(t) encode the slow acceleration and fast acceleration respectively (see Sawford and Guest 

[20]. Whereas ξA(t) evolves on the same timescale τu as the velocity U
L
 with τu being of the order of k/ε , ηA(t) 

evolves on the timescale τa which is of the order of the Kolmogorov timescale τω. 

In a fully developed turbulence τa << τu, and therefore for the large scales, 

                
2

Re u

a





 
  
 

  .                                                                                                                                  (15)
 

The generalized Langevin model for a velocity stochastic turbulence, in line with (14) is of the form [21, 22, 16] 

                
+ 

                                  

ji

i ij j ij

dWdU
a U C

dt dt
 T

                                                                                                                    (16) 

In (16) above we let 
i i ij j

a U  A T
, and   

= 
j

i ij

dW
C

dt
A

 

 wherein 

                    ( ) ( ), ( ), ( ) ( ),
i i ij j j

t a t t T t t U t u t t     A X X X .                                                              (17)      

encodes the slow acceleration; Tij is the drift tensor which depends only on the location of the particle.  The white 

noise that models the fast acceleration ηAi(t) is demonstrated by 

                ( ) ( ( ), ) ( )
j

i ij

dW
t D t t t

dt
 A X                                                                                                        (18) 

where D is the diffusion tensor which also depends only on the location of the particle, and W(t) is a vector-valued 

Wiener process.  For an insight into the diffusion tensor, let us consider a coupled stochastic process in velocity, u 

and acceleration a of the form (see Zamansky [23]): 

                ,
i i

i i ij j

du a dt

da B dt D dW



 

                                                                                                                      (19a,b) 

where dWj are the increments of the jth component of the Wiener process (〈dWj 〉 = 0;〈dWidWj 〉 = dtδij ); each 

of the vector B (the drift) and the diffusion tensor D depend on the vectors a and u. The tensor D can be 

decomposed into 

                
1

,
ij ij ij ij

D d S         (d1 not a constant ) ,                                                                              (19c) 

where Sij encodes a zero-trace symmetric tensor and Ωij is an antisymmetric tensor. For statistical isotropy 

consideration of the acceleration, Sij must vanish but Ωij need not be 0. The expressions for Bi and Dij are elegantly 

specified in [23]. Now, consider a stationary homogeneous isotropic turbulence, with zero mean velocity, 

turbulence intensity (TI) uʹ, and T the Lagrangian integral time scale. A one-component Langevin equation, in U*, 

of the fluid-particle velocity U
L
(t) reads 

                 2 1/ 2( ) ( ) (2 / ) ( )
dt

dU t U t u T dW t
T

    
                                                                                           (19d) 
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with the rms fluid-particle velocity as uʹ. Note that U*(t) indicate the modelled particle properties for U
L
(t).The 

Lagrangian velocity auto-correlation RL(t, s) given by 

                 

 
1/ 2

2 2

( ) ( )
( , )

( ) ( ) ( ) ( )

L L

L L L

U t U t
R t

U t U t











 .                                                                                           (20) 

However, in stationary homogeneous turbulence, the Lagrangian velocity auto-correlation, ( )
L

R  depends only on 

the time lag, , and is an even C
2
-function (see [24]). Thus, at the origin   ( 0) 0

L
R     . The auto-correlation in 

(20) is the exponential function 

                 /( ) ( 0) 1/ 0TR e R T         ,                                                                                              (21) 

and the time scale T satisfies 

                
0

( ) .
L

T R d 


                                                                                                                              (22) 

We revert the equation (19) in which the Markov process U*(t) ‘seeks to model’ the temporal fluid particle 

velocity U
L
(t). For a given initial condition at time t0, U*(t0) is a Gaussian random variable with zero mean and 

variance u’
2
; for t > t0, U*(t) describes the Ornstein-Uhlenbeck (OU) process (the stationary random process; as 

the Wiener process is nowhere differentiable, the Langevin equation is, in a strict sense, only heuristic). As a 

constant drift term characterizes the Wiener process, the Ornstein–Uhlenbeck process holds well when it is 

dependent on the current value of the process. The latter is true in the present case. 

The intrinsic inadequacy is that while U
L
(t) is differentiable, U*(t) is not. Therefore the model fails a qualitative 

test if U*(t) is examined on an infinitesimal time scale (see Pope [17] and Minier [24]). However, a resulting 

brilliant analysis [17] using the behaviour of the autocorrelations function shows that much as an uninterestingly 

negative slope is recorded at the origin slope at very small times /T , owing to U*(t) being not differentiable the 

exponential form provides a very reasonable approximation to the observed autocorrelations for larger times. 

░ 4. INTERMITTENCY 

Particle trajectories, under normal circumstances, submit to Gaussian statistics. Intermittency arises when 

deviations from Gaussian statistics get increasingly larger when considered at increasingly smaller scales of 

fluctuations. It is supposed that the small scales of turbulence are produced due to several interactions down the 

flow and are, at a reasonably large Reynolds number, independent of the large fluctuation scales and the turbulence 

production mechanism. The small scales depend uniquely on the mean rate of spectral energy transfer, which 

under stationary conditions amounts to the mean rate of dissipation of turbulence kinetic energy 〈ε〉, and the 

viscosity ν.  

At suitably high Reynolds numbers Sawford and Yeung [30] indicated that the inertial sub-range, which is a 

portion of the equilibrium range, is detached from both the energy- containing and dissipation scales, and therefore 

independent of viscosity. It is, in effect, characterized solely by 〈ε〉. The dissipation sub-range is the portion of 
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the equilibrium range at the smallest scales where the viscosity is essential. Momentous as it is, velocity statistics 

at various temporal scales may depend on large scale forcing and boundary conditions, as evinced by the concept 

of universality. Admitting the central nature of the concept, Arn`eodo et al. [8] investigated intermittency and 

universality properties of velocity temporal fluctuations obtained from some laboratory data. The measuring of 

intermittency features of the velocity fluctuations is typically realized through the analysis of the velocity structure 

functions.  

Regarding moments of the velocity fluctuations, the Lagrangian Velocity Structure Functions (LVSF) of positive 

integer order p in the form 

               ( )( ) ( ) ( ) ( )
p pL L L p

i i i i
v v t v t G      

,                                                                                     (23) 

where i = x, y, z encode the velocity components along a single particle trajectory, the average is defined over the 

ensemble of trajectories, and the intermittency expresses itself in the anomalous scaling exponents, λp admitting 

the power law scaling [8, 25] 

                 ( ) p
p

i
v


  : .                                                                                                                           (24) 

Giving to Kolmogorov (K41)[25] prediction 41

p
 = p/3 with exponents that deviate considerably from the simple 

scaling prediction, especially for p > 3, where λp <
41

p
 . The scaling exponents λp are determined by Taylor’s 

expansion  

               1

1

( 1) / !k k

p k
k

a p k






 
                                                                                                                     (25) 

As indicated by Arn`eodo et al. [8], the decay of the power law is imminent for scales 
n

  , when dissipative 

effects dominate. The statistics of velocity fluctuations at changing time lag can be quantitatively expressed by 

the logarithmic derivatives (see [26, 27, 28]) whose Taylor expansion is in the form 

             2 3

1 2 3
log ( ) ( ) ( ) ( ) ...,

2! 3!

p

i

p p
v pA A A       

                                                                                    (26) 

where ( )
p

A   encodes the pth-order cumulant of log ( )
i

v  . For some derivatives ( ) ( ) p

i
G  against (2) ( ) 

i
G  , we get 

             
( )

(2)

dlog ( )
( , ) =

dlog ( )

p

i

i

i

G
p

G


 



                                                                                                                                (27) 

Since ( , )
i

p   is  -dependence, a scale-by-scale characterization of intermittency may be achieved.      

Considering the energy spectrum equivalence, the LVSF, and its higher-order extensions resident in the inertial 

sub-range have the Kolmogorov similarity applied to Lagrangian statistics defined along fluid particle trajectories 

through the flow in the form 

             / 2/ 2

( ) ( )        ( )
pp pL L

i i L
v t v t t T


     : = =                                                                                   (28) 
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 and                

            ( ) ( ) ( / )       ( )
pL L p p

i i
v t v t v t T

  
    : =                                                                                          (29) 

The dissipation (Kolmogorov) scales are such that length 3 1/ 4( / ) ,     velocity 1/ 4( )v


   and time

1/ 2( )t


  , where  encodes the viscosity term. 

The deviations from Kolmogorov similarity theory are considered a culprit in the event of intermittency. At small 

scales the dissipation rate of turbulence kinetic energy is not smooth, being an extremely variable quantity. In 

consequence, the cascade process is not sufficiently described by 〈ε〉 alone, and higher moments of the dissipation 

rate are important (see Sawford and Yeung [29]). 

In temporal (Lagrangian) terms a specific value of the local dissipation rate is 

            1
( ) ( )

t L

t
t t dt




 





  
 ,                                                                                                                 (30)   

where ε
L
(t) = ε(x

L
(t), t) is the rate of dissipation along a fluid particle trajectory. The point-wise values of the 

dissipation rate are obtained as ζ → 0. 

The Refined Similarity Hypothesis (RHS) admits writing equations (28) and (29) in the form 

          / 2/ 2( ) ( ) |        ( )
ppL L p

i i L
v t v t t T

  
      : = = ,                                                                            (31) 

and 

          3 / 4 / 4( ) ( ) |        ( )
ppL L p p

i i
v t v t t

  
       : = .                                                                      (32) 

The dissipation sub-range RSH scaling was tested using (32) for  ( )t


 =  (see [29, 30] for details) by using the 

conditional structure functions. It was seen that for large values of  /

      the conditional structure functions 

approach the dissipation sub-range RSH scaling but there is a strong departure from RSH scaling as /

   → 0.   

As   → 0 the corresponding non-dimensional conditional moments of the acceleration are recovered.  

░ 5. CONCLUSION 

The most classical problems of Lagrangian turbulence relate to the issue of particle dissipation, with two salient 

aspects: (a) diffusion of single particles from a point source (typically, Taylor problem) and (b) the relative 

dispersion of pairs of particles (the Richardson problem). The Lagrangian velocity may be explained by modelling 

the trajectory of a fluid particle in a multifractal random walk in which long-time correlations and the incidence of 

large amplitude events at small scales dominate the motion. The associated nature, distribution, and time evolution 

of the dynamical structures entrenched in the particle flow introduce intermittencies in the flow regime. The LVSF, 

which submits to the Kolmogorov similarity theory (KST) was applied in studying such intermittencies. Some 

findings suggest that deviations from the Kolmogorov similarity theory are considered a culprit in the event of 

intermittency. 
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