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AB ST R ACT  

Planck wrote in a letter about the research of the energy of the electrons at the cavity of the blackbody: “I knew that the problems of the equilibrium 

between matter and radiation are of high importance for the Physics.  Besides, I knew the right formula for the distribution of the energy spectrum at 

the cavity.  It was very important to find a theoretical interpretation” [9].  After 10 years of research, finally Planck accepted and proposed the 

quantum theory as explanation to the radiation of the blackbody. The introduction of the Planck constant h was fundamental for the quantization of 

the energy. The main argument to accept the quantum theory was the concordance with the entropy concept and the statistics thermodynamic. The 

Einstein research about the quantization of the light radiation at the Photoelectric Effect was also a support for the Planck research of the cavity of 

the blackbody. Millikan mentioned about the Photoelectric Effect: “The Photoelectric Effect is a proof independent of the quantum theory for the 

radiation of the blackbody as discrete and discontinue emission of energy absorbed by the electronic components of the atoms”.  The Photoelectric 

Effect supports the constant h discovered by Planck at the research of the blackbody and that the Planck research corresponds to the reality” [9.] 

Bohr proposed a revolutionary concept for the behavior of the electron during the atom transition from one stationary level to other.  In an article 

research, Bohr mentioned:  “The correspondence principle has as consequence the comparison between the atom reaction due a radiation field with 

the reaction of the atom due a field from the mechanic classic point of view:  which is due to a group of virtual harmonic oscillators with frequency 

equal to the determined for the possible transitions between stationary levels:  hv=E-E´ ” [10].  The correspondence principle of Bohr postulated that 

for high quantum numbers the quantization approach is in correspondence with the classic theory.  Therefore, Bohr postulated the quantization of the 

energy transition for the electrons at the atom (E-E´=hf) and the quantization of the angular momentum L=nh/2π.  Bohr could explain the atom 

stability (the no radiation for the electrons at the atom) with those postulates and obtain a formula for the quantization of the energy, velocity, radius, 

angular momentum, frequency and wavelength of the radiation emitted or absorbed.   

Later, the modern quantum physics could explain the postulates of Bohr and obtain the quantization formula for the energy and angular momentum 

at the stationary levels by applying the Schröndiger Equation (wave probabilistic theory) and Heisenberg Theory (matrix theory) [4], [5]. The 

stationary states or levels correspond to those functions which satisfy the Schröndiger Equation [4], [5].  The electron in an atom no excited is at rest.  

Thus, it cannot radiate energy because it corresponds to a stationary level of the atom [4], [5].   

For other hand, Albert Einstein wrote in a research article: “Does the inertia of a body depend on its energy content?” (I
st 

die Trägheit eines Körpers 

von seimen Energienhalt abhängig?) [1]:  “If a body emits energy E in the form of radiation, its mass decreases by E/c
2
”. This is true for any type of 

radiation emitted (gravitational or electromagnetic energy) which produce a decrease in the mass of the body.  Thus, Maxwell's theory shows that 

electromagnetic waves are radiated whenever charges accelerate as for example for the electrón. Then, this electromagnetic radiation (photons) 

produces a decrease in the mass of the electron which is given by the formula of the Variant Mass for an Accelerated Charged Particle which was 

demonstrated by me at this research [2].   

At the atom, the electron only radiates this energy when it jumps from one orbit to another orbit at the atom.  It is in accordance with the experimental 

results from the spectral lines of the atom.   The difference is that in a gravitational field the particle or a planet around the sun can take any position 

at the space and any radius.  But, the electron at the atom only can take restricted positions which are explained by quantum mechanics, and the 

electrons don´t emit radiation when they orbit around the nucleus. At this article, it is explained the postulates of Bohr and the reasons for them by 

using De Broglie approach. 

The objective of this research is to demonstrate the discovery formula which describes exactly the variant mass of a charged particle at the atom 

which emits electromagnetic energy from one stationary level to other.  The results of the formula are compared with the ionization energy emission 

for the electron at the atom and the bound energy for the diatomic molecules. The results are in agreement with high accuracy. 

https://creativecommons.org/licenses/by-sa/4.0/
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1. Introduction 

Albert Einstein wrote in a research article entitled: “Does the inertia of a body depend on its energy 

content? [1]”.  Thus, if a particle emits radiation energy E (electromagnetic or gravitational), then the rest 

energy of the particle decreases in E and by the mass-energy conservation also the mass of the decreases 

at the same rate E/c
2
 [2]. The mass of a body is a measure of its energy content. The inert mass of a body 

increase or decrease with energy that it contains.  If the initial mass of the particle is M and the final mass 

of the particle is M´, then it is obtained:   M-M´=E/c
2
, E=(M-M´)c

2
, E=ΔMc

2
.  The decrease or increase in 

mass ΔM=M-M´ of the particle is linked to the radiation energy E emitted or absorbed.  This energy is 

also the lost energy of the particle.  The radiation carries inertia amid emitting and absorbing bodies [1].    

At this research, firstly it is presented the research about the blackbody radiation of Planck, the 

corpuscular behavior of the radiation (Photoelectric and Compton Effect, Pair Production, Fluorescence, 

Moseley Plot), the spectral lines of Balmer, the research at the atom of Brown, Rutherford, Bohr, 

Schröndiger, Heisenberg with the all development of the quantum mechanics, the quantum numbers and 

atoms with more than one electron.  Besides, it is explained why the electron doesn´t radiate energy as a 

particle and a wave and why the electron has restricted radius for the motion at the atom. Also, it is 

demonstrated the wave-particle duality of De Broglie and the Heisenberg Uncertainty Principle and 

Diffraction by using the Fourier Approach and Interference Double Slit Experiment by using the wave 

behavior of the electron.  It is also demonstrated the energy levels for the Hydrogen atom by using the 

Schröndiger Equation.  Then, it is showed a research for the bound total energy and energy emission for 

an electron orbiting the nucleus from a classic point of view.  It is demonstrated by theory, calculation 

and result the discovered formula which describe the mass of an electron which emits electromagnetic 

energy from one stationary level to other. The formula is in agreement with the bound energy for the 

particle orbiting the nucleus at the classic limit. Besides, the results of the formula are compared with the 

ionization energy emission for the electron at the atom and the bound energy for the diatomic molecules. 

The results between the theoretical formula and the experimental results are in agreement with high 

precision. 

2. Black Body Radiation 

2.1. Rayleigh Jeans Formula: Low frequencies 

In 1900, Rayleigh and Jeans performed a classical calculation of the energy density of the black body or 

the cavity heated uniformly to a temperature T valid only for low frequencies.  The electrons in the metal 

walls are thermally agitated and emit electromagnetic radiation within the cavity. In the cavity, a thermal 
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equilibrium is established and maintained through the absorption and re-radiation of the energy through 

the walls [9].  Therefore, there are stationary states or waves within each cavity.  Rayleigh and Jeans 

showed that the radiation within each cavity of volume V consists of stationary waves with nodes in the 

walls [9]. The number of stationary waves for the frequency interval from f to f + df is given by the 

following formula:     𝑑𝑁=
8𝜋𝑉

𝑐3
𝑓2𝑑𝑓  

The classical law of equipartition of energy has established that the average energy is the same for each 

standing wave in the cavity regardless of its frequency.  Thus, the energy is distributed equally for all 

frequencies.  The value of the average energy is given by the formula:  𝜀=kT where k is the Boltzmann 

constant.  It only depends on the temperature [9].   

The average energy content per unit volume of the cavity for the frequency range from f to f + d f is 

obtained by multiplying the number of standing waves dN by the average energy of the wave kT and 

dividing it by the volume of the cavity V [9].  The formula obtained is as follows: 

I(f,T)=
dU

df
=
8πkTf2

c3
    Energy density (energy by volume) by frequency unit  

dU=
𝟖𝛑𝐤𝐓𝐟𝟐

𝐜𝟑
df      Energy density in the frequency interval f to f+df 

 

Fig.1. Black Body and the electromagnetic radiation inside of the cavity where n is the number of 

stationary waves or nodes. Graph of energy density versus the frequency for the Rayleigh Jeans formula 

2.2 Wien Formula: High frequencies  

The Rayleigh Jeans formula did not fit the experimental data for high frequencies [5]. The integration 

over all frequencies for the Rayleigh Jeans formula gives an infinite result for the total intensity of 

radiation emitted by the body. This was known as the ultraviolet catastrophe.  

 

Fig.2. Graphic of the energy density versus frequency:  Wien Formula 
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Then, Wien proposed a formula with a better fit to these experimental data for high frequencies:   

I(f,T)=
𝑑𝑈

𝑑𝑓
=af3e−

bf

kT    Energy density by frequency unit b=h:  Planck Constant and k is the Boltzmann 

constant.  The values of a and b are obtained by fitting this function with the experimental result. 

2.3. Wien Displacement Law for frequency and wavelength 

Wien obtained the Wien Displacement Law by using his research for high frequencies.  It was obtained 

by deriving the formula of the energy density and equating it to zero to obtain the value of the frequency 

where the peak occurs at the energy density graph. This maximum frequency is related with the 

temperature of the black body: 

fmax=cte T      Wien displacement Law 

fmax=5,879*10
10

 T    constant obtained by experiment results 

The Wien law for the wavelength is as follows: 

dU=af3e−
bf

kTdf     𝑑𝑈(𝑇)=𝐼(𝑓,𝑇)𝑑𝑓 

c=λf   f=c/λ    df= - cλ
-2

 dλ 

dU=a
𝑐4

𝜆5
e−

bc

λkTdλ     Energy density for the wavelength interval λ to λ+dλ 

I(λ,T)=
dU

dλ
=a

c4

λ5
e−

bc

λkT   Energy density by wavelength unit   b=h 

The Wien displacement law for the wavelength is as follows: 

λmax T=cte     Wien displacement Law 

λmax T=0,002898  constant obtained by experiment results. 

2.4. Planck Formula 

Nevertheless, the Wien formula did not agree with the experimental data for low frequencies.  Max 

Planck solved these difficulties by proposing an empirical formula that could describe all the 

characteristics of the black body or cavity radiation for all frequencies [5].  Planck postulated the electron 

oscillators with simple harmonic oscillations and that the energy could take only discrete values:  

εn=nΔε    Δε=bf       ε𝑛=nbf     

ε=0,bf,2bf,3bf,…..  n=0,1,2,3,…   b=h:  Planck constant 

It is valid for any physical system that performs simple harmonic oscillations. Later (1905), Einstein 

assumed in the research of the photoelectric effect that the energy of each mode of oscillation of the 
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radiation field (light radiation) could also take only certain discrete values, integer multiples of bf, rather 

than continuous values [9]:    ε=nbf   b=h.  If the energy of the system obeys the Planck quantization 

ε𝑛=nbf , the system is quantized, the energy levels are called stationary states or quantum levels and the 

number n is a main quantum number.   

Then, Planck calculated that the average energy ε̅ tends to zero if the Δε=bf  is chosen to be large which 

corresponds to large frequency, and that it tends to kT if the Δε=bf is small which corresponds to small 

frequency [9]. The formula that Planck obtained by interpolation of the two function: Rayleigh and Wien 

formula is:   ε̅=
bf

e
bf
kT−1

     instead of ε̅=kT of the Rayleigh Jeans Formula:  du=
8πf2

c3
kTdf    

Then, it is possible to obtain the Planck formula when using this average energy value instead of kT in the 

Rayleigh Jeans formula of the energy density in the radiation spectrum of the cavity:      

du=
8πf2

c3
bf

e
bf
kT−1

df           Energy density in the frequency interval f to  f+df    

I(f,T)=
du

df
=
8πf2

c3
bf

e
bf
kT−1

      b=h        Energy density by frequency unit  

Therefore, Planck's great contribution (1901) consisted in proposing that the experimental results could 

be obtained if the average energy was treated as a discrete variable instead of the continuous variable of 

classical physics [9]. 

 

Fig.3. Graph of the energy density versus frequency for Rayleigh Jeans formula (blue), Wien Formula 

(turquoise) and the Planck Formula (green) 

It is possible to observe at the graphic that the Rayleigh Jeans formula is approximated equal to the Plank 

formula for low frequencies and the Wien formula is approximated equal to the Planck formula for high 

frequencies.  The constant b=h was determined experimentally and k is the Boltzmann constant.  It is 

known as Planck's constant:  b=h=6,63*10
-34

 J s. 

The density energy for the wavelength is as follows: 

du=
8πf2

c3
bf

e
bf
kT−1

df      f=c/λ     df=-(c/λ
2
) dλ       b=h:  Planck Constant 
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du=
8π

λ5
bc

e
bc
λkT−1

dλ      

I(f,T)=
𝑑𝑢

𝑑𝜆
=
8π

λ5
bc

e
bc
λkT−1

   density energy for the wavelength: Planck Formula 

The Planck formula is reduced to the Rayleigh Jeans formula for low frequencies and to the Wien 

formula for high frequencies [5].  

I(f,T)=
8πf2

c3
bf

e
bf
kT−1

        e
bf

kT=1+
bf

kT
+(

bf

kT
)2+⋯        bf<<kT       (bf/kT)

2 
& other terms are neglected. 

I(f,T)=
8πkTf2

c3
 low frequencies:   Rayleigh Jean Formula 

It is not necessary to know the value of a and b for low frequencies.  For high frequencies, the formula is 

obtained as follows:   I(f,T)=
8πf2

c3
bf

e
bf
kT−1

  

I(f,T)=
8πf2

c3
bf

e
bf
kT

             e
(bf/kT)

>>1        I(f,T)=
8πf2

c3
(bf)e−

bf

kT   

I(f,T)=
8πbf3

c3
e−
bf

kT        Wien Formula 

I(f,T)=af3e−
bf

kT        𝑎=
8πb

c3
      b=h:  Planck Constant 

2.5. Planck Formula from statistics thermodynamic:  Boltzmann Distribution 

Classical Approach: Continue Energy of the electron oscillators 

In the classical calculation of the average energy ε̅ of a large number of things of the same kind in mutual 

equilibrium at temperature T (which leads us to the equipartition law), the average energy is a continuous 

variable [9].  The equipartition law is a consequence of the Boltzmann distribution which expresses that 

the probability P (ε) that a mode of oscillation has an energy between ε and ε+dε  is equal to:   P(ε)dε=

e
−
ε
kT

Z
dε     𝑍=∫ 𝑒

−
𝜀

𝑘𝑇
∞

0
𝑑𝜀   Z=kT         

P(ε)dε=
e
−
ε
kT

kT
dε          𝜀=

∫ 𝜀𝑃(𝜀)𝑑𝜀
∞
0

∫ 𝑃(𝜀)𝑑𝜀
∞
0

=
∫ 𝜀

e
−
ε
kT

𝑘𝑇
𝑑𝜀

∞
0

∫
e
−
ε
kT

𝑘𝑇
𝑑𝜀

∞   
0

=
∫ 𝜀e

−
ε
kT𝑑𝜀

∞
0

∫ e
−
ε
kT 𝑑𝜀

∞   
0

  

∫ εe
−
ε

kTdε=−εkTe−
ε

kT   |
 ∞
0
+kT∫ e

−
ε

kTdε=(kT)2
∞

0

∞

0
  

ε̅=
∫ εe

−
ε
kTdε

∞
0

∫ e
−
ε
kT dε

∞   
0

=
(kT)2

kT
=kT  average continue energy of electron oscillators 
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ε̅ can take any continuous value as the temperatura increases.  The energy W is given by:   W=N𝜀  and  

W=NkT    U=W/V where N is the number of stationary waves, U is the energy density and k is the 

Boltzmann constant.  The number of stationary waves for the frequency interval from f to f + df is as 

follows:   dN=
8πV

c3
f2df      

dN

Vdf
=
8πf2

c3
     density of stationary waves   

dU

df
=
1

V

dW

df
=
1

V

dN

df
kT=

8πf2

c3
kT          Rayleigh Jeans formula 

Quantum Approach:  Discrete Energy of the electron oscillators  

Planck supposed that the energy could take only certain discrete values given by:  ε=0, Δε, 2Δε, …..      

εn=nΔε    n=0,1,2,……  ε:  discrete variable 

Δε=bf     εn=nΔε=nbf       b=h=6,63*10
-34

J-s    Planck constant 

Thus, it is possible to obtain Planck's formula if instead of integrals in the Boltzmann distribution, it is 

replaced by summations due the discrete energies: 

𝛆=
∑ εP(ε)dε∞
𝐧=𝟎

∑ P(ε)dε∞
𝐧=𝟎

      εn=nΔε=nbf    

P(ε)=
e
−
ε
kT

Z
            𝑍=∫ 𝑒

−
𝜀

𝑘𝑇
∞

0
𝑑𝜀        Z=kT        P(ε)=

e
−
ε
kT

kT
  

ε̅=
∑ εP(ε)∞
n=0

∑ P(ε)∞
n=0

=
∑

nbf

kT
e
−
nbf
kT∞

n=0

∑
e
−
nbf
kT

kT
∞
n=0

=
bf∑ ne−nx∞

n=0

∑ e−nx∞
n=0

     where x=
bf

kT
  

ε̅=−bf
d

dx
ln∑ e−nx∞

n=0   

∑ 𝑒−𝑛𝑥=
1

1−𝑒−𝑥
∞
𝑛=0   (Infinite Geometric Progression with r=𝑒−𝑥) 

ε̅=bf
d

dx
ln(1−e−x)=

bfe−x

(1−e−x)
=

bf

ex−1
=

bf

e
bf
kT−1

  

ε̅=
bf

e
bf
kT−1

   which is the discrete energy for the electron oscillators. 

It is replaced instead of kT at the formula of Rayleigh Jeans:  I(f,T)= 
8πf2

c3
kT   

Then, it is obtained:   I(f,T)=
8π𝑓2

c3
bf

e
bf
kT−1

  Planck Formula  b=h 

W=Nε̅     W=N
bf

e
bf
kT−1

     N:  number of stationary waves 

U=W/V                         U:   energy density  
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The number of stationary waves for the frequency interval from f to f + df is as follows:  dN=
8πV

c3
f2df      

dN

Vdf
=
8πf2

c3
 :  density of stationary waves   

dU

df
=
1

V

dW

df
=
1

V

dN

df

bf

e
bf
kT−1

=
8πf2

c3
bf

e
bf
kT−1

        Planck formula b=h 

This was not necessary to change the Boltzmann distribution.  But, it was necessary to postulate that the 

energy of the oscillators can only take discrete values εn=nhf and not continuous values as the classical 

theory predicts. 

2.6. Wien Displacement Formula from Planck Formula 

We can obtain the Wien displacement Law:   fmax=cteT and λmaxT=cte  from the Planck formula.  It is 

necessary to obtain the derivative of the density energy by frequency unit formula and equal it to zero: 

I(f,T)=
8πf2

c3
bf

e
bf
kT−1

           
𝑑𝐼

𝑑𝑓
=
8𝜋

𝑐3
𝑏(

3𝑓2

(𝑒
𝑏𝑓
𝑘𝑇−1)

−
𝑓3
𝑏

𝑘𝑇
𝑒
𝑏𝑓
𝑘𝑇

(𝑒
𝑏𝑓
𝑘𝑇−1)2

)=0  

3(e
bf

kT−1)−
bf

kT
e
bf

kT=0        x=bf/kT 

3(e
x
-1)-xe

x
=0                         (3-x)e

x
 -3=0 

It is possible to solve by numerical simulations.  It is obtained by applying the Direct Method:   y=(3-x)e
x
 

-3 

x=0   y=0 

x=1   y=2,43 

x=2   y=4,38 

x=3   y=-3 

Then, the solution must be between 2 and 3.  It is possible to do the next table: 

x f(x) xn-xn-1

2 4,3890561

2,1 4,34955292 0,1

2,2 4,2200108 0,1

2,3 3,98192772 0,1

2,4 3,61390583 0,1

2,5 3,09124698 0,1

2,6 2,38549521 0,1

2,7 1,46391952 0,1

2,8 0,28892935 0,1

2,81 0,15588446 0,01

2,82 0,01983312 0,01

2,821 0,00606083 0,001

2,8211 0,00468192 0,0001

2,8212 0,0033027 0,0001

2,8213 0,00192318 0,0001

2,8214 0,00054335 0,0001 

Table 1. Value of x for the wien displacement formula for frequency 
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Then, the solution is x=2,8214 with a tolerance error of xn-xn-1=0,0001  

If we assumed that b=h is known from the Wien Formula by fitting the experimental results, then we can 

obtain the exact Wien displacement formula: 

x=bfmax/kT      fmax=
xk

h
T      k=1,38065*10

-23
 J/

o
K      b=h=6,63*10

-34
 J s    

fmax=5,88*10
10

 T    Wien displacement Law for frequency 

If we assumed that the Wien displacement Law is known by the experimental results, then we can obtain 

the Planck Constant b=h: 

b=
xKT

fmax
              

T

fmax
=

1

5,88∗1010
     k=1,38065*10

-23
 J/

o
K         x=2,8214 

b=h=6,63*10
-34

 J s     Planck Constant 

The Wien displacement law for the wavelength is obtained as follows: 

I(f,T)=
𝑑𝑢

𝑑𝜆
=
8π

λ5
bc

e
bc
λkT−1

   density energy for the wavelength: Planck Formula 

dI

dλ
=8πbc(

−5

λ6(e
bc
λkT−1)

+
bc

kT
   e
bc
λkT

λ7(e
bc
λkT−1)

2)=0  

x=
bc

λkT
            −5(ex−1)+xex=0          (x−5)ex+5=0  

x f(x) xn-xn-1

4 -49,59815

4,1 -49,3062588 0,1

4,2 -48,3490648 0,1

4,3 -46,5898556 0,1

4,4 -43,8705212 0,1

4,5 -40,0085657 0,1

4,6 -34,7937263 0,1

4,7 -27,9841517 0,1

4,8 -19,3020835 0,1

4,9 -8,42897797 0,1

4,91 -7,2075473 0,01

4,92 -5,96020905 0,01

4,93 -4,68656586 0,01

4,94 -3,38621497 0,01

4,95 -2,0587482 0,01

4,96 -0,70375184 0,01

4,961 -0,56672198 0,001

4,962 -0,42941222 0,001

4,963 -0,29182213 0,001

4,964 -0,15395128 0,001

4,965 -0,01579926 0,001 

Table 2. Value of x for the wien displacement formula for wavelength 
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It is possible to solve by numerical simulations.  It is obtained by applying the Direct Method:     𝑦=

(𝑥−5)𝑒𝑥+5  

x=0   y=0 

x=1   y=-5,87 

x=2   y=-17,16 

x=3   y=-35,17 

x=4   y=-49,59 

x=5   y=5 

Then, the solution must be between 4 and 5.  It is possible to do the above table 2: 

Then, the solution is x=4,965 with a tolerance error of xn-xn-1=0,001 

If we assumed that b=h is known from the Wien Formula by fitting the experimental results, then we can 

obtain the exact Wien displacement formula: 

x=
bc

λmaxkT
      λmaxT=

bc

kx
        λmax T=0,002898    Wien displacement Law 

If we assumed that the Wien displacement Law is known by experiment results, then we can obtain the 

Planck Constant: 

b=
kxλmax T

c
   k=1,38065*10

-23
 J/

o
K     x=4,965     c=3*10

8
 m/s (light velocity) 

b=h=6,63*10
-34

 J s   Planck Constant 

2.7. Deduction of the Stefan Boltzmann Law R=σT
4
 and 𝒖=

𝟒

𝒄
𝝈𝑻𝟒   

It is considered the radiated energy perpendicular to an area.  It should be noted that if the system is in 

thermal equilibrium, half the energy density of the waves goes towards the walls and half goes out. 

dE

df
:  energy by frequency unit  

dR

df
:  radiation intensity (or power radiation (

E

t
) by area) by frequency unit  

dE

df
=2

dR

df
ΔtΔA   formula for a perpendicular radiation energy to the walls.   

The number 2 is because the half of the energy goes to the walls and the other half leave from them.  

Because, E is the total energy, it is the double of the radiation intensity R.     
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Fig.4. Energy radiated from a surface 

Δt=
Δx

c
          

dE

df
=2

dR

df

∆x

c
ΔA       ΔV=ΔxΔA 

If the radiation has not the perpendicular direction to the walls, then it is necessary to do some 

corrections:    
dE

df
=2

dR

dfcosθ

∆V

cosθ c
   

 

Fig.5. Energy radiated from a Surface with an angle θ 

ΔR/cosθ is the component of the power radiation by area in the new direction. 

Δx/cosθ is the component of Δx in the new direction. 

dE

df
=
2

c

dR

df

∆V

<cos2θ> 
         

dR

df
=
c

2

du

df
<cos2θ>        du=dE/dV 

u:  energy density given by the Planck Formula 

<cos
2
θ>   is the average value for all values of θ from 0 to 2π 

<cos
2
θ> = 

1

(2π−0)
∫ cos2
2π

0
θdθ=

1

2π
∫

1+cos2θ

2

2π

0
dθ=

1

2π
(π)=

1

2
 

dR

df
=
c

4

du

df
           

𝑑𝑢

𝑑𝑓
=
8πf2

c3
bf

e
bf
kT−1

      energy density given by the Planck Formula 

u=
8πb

c3
∫

f3

e
bf
kT−1

df
∞

0
          x=

bf

kT
     f=

xkT

b
    df=

kT

b
dx  

u=
8π(𝑘𝑇)4

(bc)3
∫

𝑥3

ex−1
𝑑𝑥

∞

0
         u=

8π(kT)4

(bc)3
I 

I=∫
x3

ex−1
dx=∫

x3e−x

1−e−x
dx

∞

0

∞

0
=∫ x3

∞

0
e−x∑ e−kxdx∞

k=0   
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∑ e−kx∞
k=0 =1+e−x+(e−x)2…..=

1

1−e−x
   Geometric Progression r=e

-x
 

I=∫ ∑ x3e−(k+1)xdx=∑ ∫ x3e−kxdx
∞

0
∞
k=1

∞
k=0

∞

0
  

I=∑ ∫(
v

k
)3e−v

dv

k

∞

0
∞
k=1     where   v=kx        x=v/k            dx=dv/k 

I=∑ (
1

k
)4∫ e−vv3dv

∞

0
∞
k=1   

∫ e−vv4−1dv
∞

0
=Γ(4)=(4−1)!=6  Γ(n)=(n-1)!:  is the gamma function 

∑ (
1

k
)4=

π4

90

∞
k=1   

I=
π4

90
(6)=

π4

15
           u=∫

du

df

∞

0
df=

8π(kT)4

(bc)3
I       u=

8π(kT)4

(bc)3
π4

15
                 

u=
4

c

2π5k4

15b3c2
T4            σ=

2𝜋5𝑘4

15b3𝑐2
         σ:  Stefan-Boltzmann Constant 

u=
4

c
σT4              u:  energy density:  E/V      b=h Planck Constant   

σ=
2𝜋5𝑘4

15b3𝑐2
               σ=5,670*10

-8
 
𝑊

𝑚2 °𝐾4
     Stefan-Boltzmann Constant 

dR

df
=
c

4

du

df
             R=

c

4
∫
du

df

∞

0
df        u=∫

du

df

∞

0
df      𝑢=

4

c
σT4 

R=
c

4
u                   R=

c

4

4

c
σT4             

R=σT
4
               Stefan Boltzmann Law  

R:  radiation intensity (or power radiation (
E

t
)by area:  E/(tA)) 

3. Corpuscular behavior of radiation: Photon interaction  

Experiments shows that the radiation have wave and corpuscular behavior.  Maxwell's equations predict 

the existence of electromagnetic waves produced by oscillating charges. At the macroscopic world, all 

the properties exhibited by the radiation (light) are wave behaviors: refraction, reflection, diffraction, 

polarization and interference (Young Experiment or double slit experiment). Thus, the waves seem to be 

a perfect way to describe light and other forms of electromagnetic radiation, at least at the macroscopic 

level [12].  However, at the microscopic level, the electromagnetic radiation exhibits a different set of 

properties as for example at the Photoelectric effect and Compton effect. The photoelectric effect showed 

at the microscopic level that light in the nature is granular rather than smooth and that it carries its energy 

in discrete bundles or packets called photons. Thus, the radiation is composed of photons at the 

corpuscular theory. Therefore, the interaction between the electromagnetic radiation and the matter at the 
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microscopic scale, must be described in terms of the interaction between the individual particles 

(electrons) and the individual photons [12]. 

The interaction of photons with matter is characterized by the fact that each x ray photon is removed 

individually from the incident beam in a single event [11].  Thus, the number of photons removed: ΔB is 

proportional to the thickness traversed Δx (which depends the electron numbers), and to the number of 

incident photons B: ΔB= -µBΔx   µ:  attenuation coefficient.  The absorption occurs where only a certain 

fraction of the incident radiation (Bo) may pass through the absorber [11]. If this happens, the wavelength 

of the transmitted beam is unchanged and the transmitted beam B (if the radiation is homogeneous: µ is 

constant) is described by the next formula (which is the formula for the attenuation of radiation in 

matter):   B=Boe
−µx . 

A number of photons equal to Bo-B have been lost in the absorption process, and most of this loss being 

due to the photoelectric effect. The value of  µ referred to the above equation is a function of both the 

photoelectric absorption (τ) and the scatter (σ) (Rayleigh and Compton Scattering): µ=f(τ)+f(σ).  

However, f(τ) is usually large in comparison with f(σ).   

Because the photoelectric absorption is made up of absorption in the various atomic levels, it is an atomic 

number dependent function. A plot of µ/ρ against λ (or energy E) contains a number of discontinuities 

called absorption edges, at wavelengths corresponding to the binding energies of the electrons in the 

various subshells [11]. In the energy range being considered from about 50 keV to about 50 MeV for 

gamma ray photons, most of the interactions are due to: Coherent (Rayleigh) Effect, Photoelectric Effect, 

Compton Effect, Pair Production [11]. 

3.1. Coherent (Rayleigh) effect 

When a monochromatic X ray beam strikes a target, it may be absorbed (photoelectric effect) or scattered 

from the atomic nuclei or the electrons.  At very low energy of the incident x-ray photon, there is only 

scattering of the incident photon without energy lost and no ionization.  It is known as Rayleigh 

scattering or Coherent scattering:   a X-ray photon collides with one of the electrons of the absorbing 

element, and the photon is deflected (scattering by the atomic electrons) from its original direction 

without energy lost (elastic collision) [11], [12].    

Rayleigh scattering can be explained by means of the wave theory:  it occurs when an electromagnetic 

wave moves near an electron and excites it into oscillations with the same frequency and with the same 

phase as the incident photon. Since there is not energy change involved at the process, the coherent 

scattered radiation will retain exactly the same wavelength as the incident beam.  The probability of this 

effect is proportional to Z
2.6

/E
2
 [12]. 
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3.2. Photoelectric Effect (Quantization of the radiation: light) 

It occurs for low energy photons E<200 keV.  It can be explained at the wave theory by the next form:  

the electromagnetic radiation incident on the surface which consists of electric and magnetic fields can 

exert forces (mainly the electric field) on the electrons of the surface and they can be emitted [5], [11].    

Also, it can be also explained at the microscopic level by means of the electromagnetic radiations as 

composed of photons.  An incident photon with sufficient energy is completely absorbed by a bound 

electron of an atom in the absorber material, and the electrons are ejected (photoelectron).  The photon 

gives all its energy to the bound electron (recoil electron) of the atom at this effect.  A bound electron is 

required to conserve energy and momentum.  The electron uses part of the energy to overcome its 

binding to the atom and takes the rest as kinetic energy.  The vacancy left in the atomic structure by the 

ejected electron is filled by one of the electrons from a higher shell or by a free electron from outside the 

atom. This transition is accompanied by the emission of a characteristic x-ray.  Also, this x ray can be 

imparted to another electron, which is emitted and it is called Auger electron.  The subject of this study is 

called Fluorescence.  The probability of this effect is dependent upon Z, and an approximate expression 

for the absorption probability τ is:  
𝑍𝑛

𝐸3.5
 where n is normally between 4 and 5 depending of the absorber 

material [11].  

It was observed at the Photoelectric effect that if the frequency of the incident radiation is very low, then 

there is no electron ejected. The classic electrodynamic has established that the electrons must be emitted 

in any frequency if the intensity is enough.  The quantization of the electromagnetic radiation solved the 

contradiction from classic electrodynamic for this experiment [5].  Einstein proposed a corpuscular 

theory for the incident radiation (light) at the Photoelectric Effect [5]. The formula of the Photoelectric 

effect is as follows:  hf=Kmax+Uo  Uo:  bound energy of the electron, hf: electron energy. 

The bound energy was called work function.  It is equal to the minimum energy E=hfmin necessary to 

eject an electron with kinetic energy almost with zero value:  hfmin=Uo    fmin=Uo/h      Uo=work function     

K=0   for  fmin 

If f<Uo/h (very low frequency, very low energy), then there is no electron ejected independent of the 

radiation intensity.  If the frequency is increased: f≥Uo/h  until the value where the energy of a single 

photon E=hf is more than the bound energy of the electron or work function Uo : hf≥Uo, then the electron 

is ejected.  The rest of the energy is given to the electron as kinetic energy.  Thus, the electron has 

absorbed the energy of a single photon (with energy E=hf) from the electromagnetic radiation [4], [5].  If 

the radiation intensity (with minimum frequency f>Uo/h) increases, then more electrons can be ejected. 

The maximum kinetic energy of the electron increases linearly with the frequency: Kmax=hf-Uo.   It also 
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depends on the energy of the incident radiation which at the microscopic level is composed of quantum 

packets whose energy depends of the frequency (E=hf ). It is concluded that for a fixed value of 

frequency, the maximum kinetic energy of the electron always is the same independent of the radiation 

intensity.  Nevertheless, the number of electrons emitted increases with the intensity.  Besides, some 

electrons can be ejected with a kinetic energy less than the Kmax because some electrons can lose energy 

in the collision process at the atom [4], [5].  

Planck proposed a quantization of the energy for the electron virtual oscillators in the cavity walls of the 

blackbody wave theory. Einstein proposed a corpuscular theory for the incident radiation (light) [5].  This 

photoelectric effect was a proof of the analogy of the atom with the Blackbody Research of Planck:  the 

electrons at the cavity of the blackbody behave as virtual oscillators which absorb and emit energy in 

discrete packets of energy or photons.  At the Photoelectric Effect, the energy of the incident radiation is 

quantized as discrete quantum energy called also photons. 

In resume, this effect was a proof that the energy of the incident radiation (electromagnetic radiation) is 

composed of packed of energy called photons with energy E=hf which is given to the bound electron.  It 

was also a proof of stationary levels of energy at the atom and the quantization at the Blackbody research 

from Planck.  Therefore, at the microscopic level, there is emission or absorption of energy as discrete 

packets of energy called photons where the incident energy radiation is the sum of all discrete packets of 

energy.   

In 1916, Millikan conducted a series of experiments that confirmed Einstein's theory of the photoelectric 

effect. This experiment demonstrated the quantization of the light radiation and the corpuscular theory of 

Einstein [5]. It was also possible to determine Planck's constant with this experiment [5].  

 

Fig.6. Graphic of the maximum kinetic energy of the photoelectrons versus the frequency of the light for 

the Photoelectric Effect 

The figure shows a linear relationship between the maximum kinetic energy and the frequency:  

Kmax=hf-Uo.   The constant of Planck was possible to obtain from the slope of the graphic of the 

maximum electrical potential to stop the electron flux versus the frequency: 

hf=Kmax+Uo       Kmax=(1/2) mv
2
=eVmax 
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Vmax: electrical potential necessary to stop the electron flux: retardation potential. 

hf= eVmax +Uo       Vmax=(h/e)f-(Uo/e) 

s=h/e  (s:  slope) 

h=s e   where s is the slope and e is the electric charge of the electron   

This same constant that is used for the quantization of the virtual electron oscillators in the black body 

cavity is used to quantize electromagnetic radiation in the Photoelectric Effect.  This constant is called 

the Planck's constant [5]. 

It is also possible to determine Uo when Vmax=0:  Uo=hfmin 

3.3. Compton Effect 

The Compton Effect (incoherent scattering) occurs at energies much greater than the binding energies of 

the electrons. It is the dominant mode of interaction around 1 MeV (intermediate energy range). As the 

electromagnetic radiation is composed of photons, the interaction of the electromagnetic radiation with 

the matter can be described in terms of collisions between the individual particles (electrons) and the 

individual photons. At this effect, the incident γ photon scatters from an outer shell electron of the atom 

in the absorber material at an angle Φ.  The photons are scattered as if the electrons were free and at rest 

(loosely bound). The photon gives up a small part of its energy to the loosely bound electron as kinetic 

energy during the collision.  As result of it, the wavelength of the incoherent scattered photon will be 

greater than λo  (less energy, less frequency,  more wavelength).  The photon never lost the whole energy 

in any one of the collisions. The scattered photons can then continue through the absorber and interact 

again or scatter out of the absorber material completely.   [11], [12].  Typically, the photon will have 

sufficient energy to produce several recoil electrons.  Therefore, all possible energy losses will occur in a 

x-ray beam.  The net result is the production of ion cascades as fast electrons react with other atoms. 

The probability of this effect decreases rapidly with the increasing energy and it is also dependent on the 

number of electrons available Z for the scattering of the photon.  The probability of this effect is 

proportional to Z/E [11],[12].  If the full energy of the incident photon is not absorbed in the detector, 

then there is a continuous background in the energy spectrum, known as the Compton continuum. This 

continuum extends up to an energy corresponding to the maximum energy transfer, where there is a sharp 

cut-off point, known as the Compton Edge (for Φ=180
o
: backscattering of the photon). There is a 

probability that each event has approximately equal chance to produce a pulse with any height up to this 

maximum. Thus, Compton events will provide a well distributed low-energy area in the spectrum [11], 

[12]. Arthur Compton performed his experiment in 1923 and at this time it had already been known that 
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a material illuminated by x-rays gave off what were called secondary rays.   The objective of the 

Compton experiment was to show that these secondary rays were primarily the result of scattering of the 

incident x-rays from electrons in the material [12]. 

X-rays of known wavelength were produced in an x-ray tube and allowed to strike a graphite target.  A 

series of slits allowed to enter to the spectrometer to only those scattered x-rays which left the target in a 

direction making an angle Φ with the direction of the beam of incident x-rays. This angle Φ was the angle 

through which these particular x-rays had been scattered and its value could be varied by moving the 

x-ray source [12].  The x-ray spectrometer consisted of a crystal from which the x-rays were reflected and 

directed to an ionization chamber where the x rays were detected. The wavelength of the scattered x-rays 

could be determined from the angle at which they were reflected from the crystal with maximum 

intensity [12].  

The scattering of x-rays from free electrons was explainable in terms of the classical electromagnetic 

wave theory of radiation.  The details was worked out  by Thomson.  Besides, J.A. Gray noticed that the 

scattered x-rays had the same polarization and roughly the same intensity as were predicted by 

Thomson's scattering theory, but that the scattered rays were absorbed more readily (less energy) than the 

incident x-rays.  It was verified by Compton and it occurred to him, that this increased absorbability 

could be explained if one assumed that the wavelength of the scattered x-ray was slightly higher (more 

wavelength, less energy, less frequency) than the original wavelength of the incident x-rays [12]. 

The measurements done by Compton of the absorbability of the scattered x-rays over a wide range of 

incident wavelengths, indicated that the increase in the wavelength of the scattered x-rays was consistent 

in the order of 0.03A. Then, Compton decided to check this increase wavelength directly, using an x-ray 

spectrometer [12].  Besides, he checked if the wavelength shift was depended upon the angle Φ through 

which the x-rays were scattered.  

The incident x-rays on the graphite target had a wavelength of λ=0.707 A.  When Φ= 0°, the detected 

x-rays in the spectrometer are essentially those which have undergone with no scattering. Thus, the 

spectrometer's output is a single peak centered around λ=λ´=0.707 A at this angle [12].  As the value of Φ 

is increased, the single peak splits up into two peaks, one at the original value of λ=0.707 A, and the other 

at the increased wavelength λ´ whose value depends upon the value of Φ.  Compton showed that at least 

some of the scattered x-rays had their wavelengths changed in the scattering process. The amount by 

which the wavelength of a scattered x-ray changed was directly related to the angle Φ through which it 

had been scattered. The empirical relationship (experimental results) for the shifted peak position was 

given by:  Δλ=λ´-λ=λc(1-cosΦ)  where λ´: scattered x-rays wavelength, λ: incident x-rays wavelength, 

λc=h/(mec)= 0,0243 A: electron Compton wavelength, and Φ:  scattered angle of x-rays [12]. 
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The photons carries a specific amount of momentum and energy and they behaves like particles with a 

rest mass of zero. The standard rules of relativistic kinematics apply to these collisions, and it can be used 

to determine the properties of the scattered radiation [12].  

 

Fig.7. The Compton interaction 

Momentum Conservation 

pγ= pγ´cosΦ+pe´cosθ    pe=0 because initially the electron is at rest. 

0= pγ´senΦ-pe´senθ     

pγ- pγ´cosΦ=pe´cosθ    

pγ´senΦ=pe´senθ     

By squaring both sides of the two equations and adding both equations, it is obtained: 

pγ
2
-2 pγ pγ´ cosΦ + pγ´

2
= pe´

2 

Energy Conservation 

mec
2
+ Eγ = Ee´ + Eγ´     me=mo :  rest mass of the electron   pe=0 

Ee´=mec
2
+ Eγ - Eγ´           K= Eγ - Eγ´ 
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2
+K     Total Energy for the electron 

By using the Dirac equation and the total energy for the electron, it is obtained: 
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pγ
2
-2 pγ pγ´ cosΦ + pγ´

2
= pe´

2
 

2 meK+
𝐾2

𝑐2
= pγ

2
-2 pγ pγ´ cosΦ + pγ´

2 

pγ=h/λ    pγ´=h/λ´     K=Eγ - Eγ´   K=(hc/λ)-(hc/λ´) 

2 me(
ℎ𝑐

𝜆
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ℎ𝑐

𝜆
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𝜆
−
ℎ𝑐

𝜆
)2
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ℎ

𝜆
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ℎ

𝜆
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ℎ

𝜆
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ℎ

𝜆
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ℎ
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ℎ

𝜆
)(
ℎ
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ℎ
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ℎ
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ℎ
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ℎ
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2 meℎ𝑐(
1

𝜆
−
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𝜆
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ℎ

𝜆
) (
ℎ

𝜆
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λ́−λ

λ́λ
)=
h

λ́λ
(1-cosΦ) 

λ´-λ=Δλ= 
ℎ

𝑚𝑒𝑐
(1-cosΦ)      Compton wavelength formula       me=mo   

λ: wavelength of  incident radiation  λ´: wavelength of  scattered radiation 

where λc=
ℎ

𝑚𝑒𝑐
 is the Compton wavelength   λc=0,0243*10

-10
 m 

hc

E
−́
hc

E
=

h

mec
(1−cosΦ)        E=hf=hc/λ          λ=hc/E 

E′γ=
Eγ

1+
Eγ

mec
2(1−cosΦ)

         Energy of the scattered photon        me=mo   

Where, Eγ is the incident photon energy, Eγ ´ is the energy of the scattered photon. 

The kinetic energy of the electron after the collision is given by: 

K=Eγ−Eγ
′=Eγ−

Eγ

1+
Eγ

mec
2(1−cosΦ)

  

K=Eγ−Eγ
′=

Eγ
2(1−cosΦ)

mec2+Eγ(1−cosΦ)
                 me=mo   

where:   Ee ´= mec
2
 +K     Ee´ = mec

2
+ hf -hf´     K= hf -hf´    me=mo . 

It can be seen that since all scattering angles for the photons are possible, the electron energy ranges from 

K=0 for Φ=0
o
 to K=2Eγ

2
/(mec

2
+2Eγ) for Φ=180

o
 (maximum energy which can be transferred to the 

electron).  It was assumed in the derivation of the Compton wavelength shift equation, that the electron 

involved was free, rather than being bound to an atom.   If the electron had been bound to the atom, the 

situation would have been quite different, since also the atom would have been involved in the collision.  

The assumption is valid for electrons lightly bound with energies of few eV and for photon energies 
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much bigger than it, in the order of keV or more [12]. 

3.4. Pair Production 

Pair production occurs with high energy γ rays of energy in the range of 5-10 MeV. It is produced by high 

energy cosmic gamma rays (photons) or high energy gamma rays emitted by radioactive substances or in 

laboratory due bremsstrahlung photons produced in particle accelerators. It is the process in which a high 

energy photon in the field of a nucleus or an electron disappears with the creation of an electron-positron 

pair. The positrons (positive charge) are the antiparticle of the electron (negative charge). It has similar 

properties of the electron but the charge and the magnetic momentum is opposite to the electron.  

 

Fig.8. Pair Production 

The nucleus goes back in opposite direction to the direction of the electron-positron motion. The nucleus 

energy is very small and neglected due the high value of the nucleus mass (very low recoil velocity).  

Nevertheless, the presence of the nucleus is necessary for the momentum conservation. The total kinetic 

energy of the resultant particles is equal to the photon energy minus the rest mass energy of the two 

particles which have been created.   The equation that express this relation is as follows:   hf=Ee+Ep  

Ee=mec
2
+Ke                     Ep=mpc

2
+Kp             mp=me 

hf=2mec
2
+Ke+Kp 

The minimum energy E=hfmiin to create the electron-positron pair is given by the next formula:    

E=hfmin=2mec
2
   K=0 

E=hfmin=1.022 MeV    fmin=2,4*10
20

 Hz    f=c/λ    λmax=0.012 A 

Thus, if the photon energy is greater than 1.022 MeV=2mec
2
 (E>1.022 MeV, f>1.022/h f>2,4*10

20
 Hz or 

λ<hc/1.022 λ<0.012 A) in presence of an atomic nucleus, then an electron positrón pair is created and the 

residual energy is distributed evenly between the electron and positron as kinetic energy.  After, the 

positron is combined with one electron in a bound system called positronium.  The electron and the 

positron moves around of the mass center of this system. Then, the positron is annihilated with the atomic 

electron producing two γ rays (photons) of energy 511 keV.  The half life of the positron is very short 

(10
-10

 s) [11].   The total charge is conserved at this process and the kinetic energy of the positron is a little 
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more than the kinetic energy of the electron.  It is because the positive charge of the nucleus accelerates to 

the positron and dis-accelerates to the electron.  The cross section for this process shows that it varies 

with Z approximately as Z
2
.  For higher Z materials, this dominance will occur at a lower energy.   

3.5. Pair Annihilation 

It is the opposite process to the pair creation.  An electron and positron (particle and antiparticle) initially 

at rest and close between them are attracted and annihilated.  At this process, the matter disappears and it 

is converted in energy radiation or photons. It is no possible to create only one photon because the 

momentum needs to be conserved.  It is possible to create two photons or more but the two photons 

creation is the process more probable.  The two photons are created with equal momentum but with 

opposite sign.  Then, they moves each from the other in opposite direction. Each photon has equal energy 

of 511 keV.  The momentum conservation requires that the momentum of the two photon needs to be 

equal:  0=p1-p2     p1=p2    p=hf      f1=f2=f   c=λf      λ1=λ2=λ 

The energy of each photon is equal to E=hf 

hf=mec
2
=0.511 MeV 

hc/λ=mec
2
 

λ=
h

mec
   which is equal to the Compton wavelength λ=0,0243 A 

3.6. Flourescency, Moseley Plot 

X-rays can be described in 2 ways:  electromagnetic wave or particle (photon). In the electromagnetic 

spectrum, we can see that the photon energies of the x-rays are between 100 eV and 100 keV, the 

wavelength between 10
-8

 and 10
-12

 m, and the frequency between 10
16

 and 10
20

 Hz.   

X-ray fluorescence (XRF) is the phenomenon where a material is exposed to X-rays of high energy, and 

as the X-ray (or photon) strikes an atom (or a molecule) in the sample, the energy is absorbed by the 

electron at the atom.  If the energy is high enough, a core electron is ejected out of its atomic orbital 

(lifted into the continuum) as the Photoelectric Effect has established.  Then, an electron from an outer 

shell drops into the unoccupied orbit or level to fill the hole left behind. This transition gives off a X-ray 

photon of fixed characteristic energy (Fluorescence X-ray) that can be detected by a fluorescence 

detector. The energy needed to eject a core electron is characteristic of each element. Besides, the energy 

emitted by the transition is also characteristic of each element. Thus, it is possible to discover the material 

which is composed a sample by using Fluorescence X-rays [11]. X-rays were first discovered by 

Wilhelm K. Roentgen in 1895.  In 1913, Henry Moseley, measured and plotted the x-ray frequencies for 

about 40 of the elements of the periodic table.  He showed that the K-alpha x-rays followed a straight line 
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when the atomic number Z versus the square root of frequency was plotted [11]. With the insights from 

the Bohr model, we can write his empirical relationship as follows:   ΔE=hf=hcRZ2(
1

n2́
−
1

n2
)   

energy spectral lines          

ΔE=hcR(Z−1)2(
1

n2́
−
1

n2
)         R=

me4

8εo2cb3
 : Rydberg Constant   

ΔE=hf=13.6 eV (Z−1)2(
1

12
−
1

22
)=

3

4
13.6 eV (Z−1)2  

 (Z- σ)=(Z-1)   σ=1:  shielding constant  σ≤1      n´=1 n=2 Kα lines    

Z=√
4h

(3)(13,6)
√f+1     Z=2,016∗10−8√f+1    Z versus √f:  Moseley Plot 

 

Fig.9. Moseley's plot: atomic number Z vs square root of frequency √𝑓∗10−8 (f in Hz) for the Kα lines 

It is also possible to obtain the relationship between the wavelength of a characteristic X-ray photon and 

the atomic number Z of the excited element: 

1

λ
=δ(Z−σ)2    

1

λ
=R(Z−𝜎)2(

1

n2́
−
1

n2
)    R: Rydberg Constant   R=

me4

8εo2cb3
    

The reciprocal of the square root of the wavelength as a function of atomic number, for the K, L and M 

series (which can be graphed) is obtained as follows:         

 
1

√𝜆
=√R

3

4
(𝑍−1)  δ=3R/4   σ=1 shielding constant σ≤1   n´=1 n=2   Kα lines    

δ is a constant that takes different values for each spectral series  

The primary source unit of x-rays consists of a very stable high-voltage generator, capable of providing a 

potential of typically 40–100 kV.  The current from the generator is fed to the filament of the X-ray tube.  

X-rays are produced when the electrons are suddenly decelerated with a high voltage (accelerated 

charges give off electromagnetic radiation from the Maxwell Theory), upon the collision with the metal 

target (as tungsten for example). These x-rays are commonly called bremsstrahlung or "braking 

radiation” (white radiation also). If the bombarding electrons have sufficient energy, they can knock an 
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electron out of an inner shell of the atoms of the metal target. Then, electrons from higher states drop 

down to fill the vacancy, emitting characteristic x-ray photons (characteristic x-rays) with precise 

energies determined by the difference of the energy levels where the electron transition has occurred: 

ΔE=Ei-Ef=hf [11]. The wavelength λ, in pm, can be derived from the tabulated energy E, in keV, by the 

relationship:   E=hf       f=c/λ       E=hc/λ       λ=hc/E    λ(pm)=
1239.81

E(keV)
      

If one plots the intensity of the x rays emitted versus the x rays wavelength for varying accelerating 

voltage, one obtains that the intensity increases with the energy voltage and with Z of anode.  The 

maximum intensity is at 1,5λmin.  This peak is characterized by a continuous distribution of radiation 

which becomes more intense and shifts toward higher frequencies or lower wavelengths when the energy 

voltage of the bombarding electrons is increased [11].    

The general fall in the x-ray absorption coefficient or in the plot of the x-rays intensity versus the x-rays 

wavelength is interrupted by a sharp rise when the energy is equal to the binding energy of an electron 

shell (K, L, M, etc.) in the absorber [11].  This sharp rise is the minimum value of energy at which a 

vacancy can be created in the particular shell.  It is referred as the ‘edge’ or ‘critical excitation’ energy.  

They are generated when a vacancy in an inner shell created by an X-ray or an electron excitation, is 

filled by the transfer of an electron from another shell, thus leaving another vacancy in that shell.  At this 

process, it is emitted by the electron characteristic x-ray photons or spectral lines during the transition as 

it was mentioned before.  The energy of the line is equal to the difference of the binding energies of the 

shells where the electron transition has occurred: ΔE=Ei-Ef=hf.  Depending on the atomic number, the 

X-ray spectra from the elements can include lines from the K, L, M, N and O series corresponding to 

excitation of the K, L, M, N or O levels.  Lines are identified both by the common labels:  Kα1, Kα2 for 

example or the term labels giving in order the shells with the ‘initial’ and ‘final’ vacancies: KLII, KLIII.   

In the case of a metal with a small atomic number such as copper or molybdenum, we observe very 

characteristic lines [11].  They are caused by electrons being knocked out of the K shell of an atom and 

then the electrons from the L shell cascading down into the vacancies in this K shell. The energy emitted 

in this process corresponds to the so-called Kα  (n=2 to n´=1) and Kβ (n=3 to n´=1) lines. Transitions to 

the n=2 or L shell are designated as L x rays:  n=3 to n´=2 is Lα , n=4 to n´=2 is Lβ [11]. 

The continuous distribution of x rays which forms the base of the plot of the x rays intensity versus the x 

rays wavelength is the bremsstrahlung radiation (white radiation). The probability that a vacancy in a 

given shell will result in emission of anX-ray is the fluorescence yield of that shell.  Not all vacancies 

result in the production of characteristic X-ray photons since there is a competing internal rearrangement 

process known as the Auger effect [11]. The ratio of the number of vacancies resulting in the production 
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of characteristic X-ray photons to the total number of vacancies created in the excitation process is called 

the fluorescent yield.  The selection rules for the production of normal lines require that the principal 

quantum number n must change by at least one, the angular quantum number l must change by (+,-)1, and 

the J quantum number (where J= l+ s, s is the spin quantum number) must change by 0 or 1.  

In effect, this means that for the K series only p,s transitions are allowed, yielding two lines for each 

principal level change [11]. Vacancies in the L level follow similar rules and give rise to L series lines.  

There are more of the L lines since p,s, s,p and d,p transitions are all allowed [11].  In practice, the 

number of lines observed from a given element will depend upon the atomic number of the element, the 

excitation conditions and the wavelength range of the spectrometer employed.  While most of the 

observed fluorescent lines are normal, certain lines which are called forbidden lines may also occur in 

X-ray spectra that do not at first sight fit the basic selection rules.   

Other source of photons is the radioactivity.  It refers to the particles which are emitted from the nucleus 

as a result of the nuclear instability.  Because the nucleus supports the intense conflict between the two 

strongest forces in the nature (strong and electromagnetic forces), it should not be surprising that there 

are many nuclear isotopes which are unstable and emit some types of radiation.  The most common types 

of radiation are called alpha, beta, and gamma radiation, but there are other varieties of radioactive decay.  

After a radioactive decay, the daughter-nucleus is often in an excited state and it can get into the 

ground-state by emitting a high energy gamma-photon.  These photons can only have discrete energy 

values.  The different types of radioactivity bring to different decay paths which transmute the nucleus 

into other chemical elements.  It is possible to get mono-energetic x-rays photons with the decay product 

of Am(241) in Np (237).  

4. Atom  

4.1. Brown Research 

In 1827, Brown observed that the pollen grains of the plants acquired some movement when entering the 

water. After 40 years, it was concluded that this movement was due to eventual collisions of small 

invisible particles that belonged to the liquid and not to the pollen. These particles were the atoms of the 

liquid that when colliding with the pollen particles were in evidence.   

After, it was shown that these invisible water particles were not atoms but molecules, which in turn are 

composed of atoms. In this way, the atomic theory began to establish itself among scientists. This was an 

indirect observation. The atoms cannot be seen but with the microscope the movement of the pollen 

within the liquid can be observed due the movement of the atoms of the liquid.  Thus, it is possible to 

study atoms indirectly even though they are not visible [8].   
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In 1905, Albert Einstein published an article where he explained in detail how the movement that Brown 

had observed was the result of micro particles being moved by individual water molecules [8]. This 

explanation served as convincing proof that atoms and molecules exist which was verified 

experimentally by Jean Perrin in 1908.  Later, Perrin was awarded the Nobel Prize in Physics in 1926 for 

his work on the discontinuous structure of matter.  Einstein had received the award five years earlier for 

his theoretical research of the Photoelectric Effect.  Furthermore, Einstein made many contributions in 

atomic physics with ideas and theoretical research in the Blackbody Research of Planck and the 

quantization of the atom and the radiation field (light) at the Photoelectric Effect. Nevertheless, 

Einstein´s biggest contribution was in Gravitation research about the Spatial and General Relativity.   

4.2. Rutherford Model 

The electrical field at the atom is very similar to the gravitational field at the Planetary System.   In fact, 

it is possible to observe the analogy at the force formula for the atom and for the planetary system:  

F=k
e2

r2
       F=G

mM

r2
            

At the planetary system, the gravitational force is the responsible for the motion of the Planets around the 

Sun.   At the atom, the electrical force is the responsible for the motion of the electrons around the 

nucleus.  

 

Fig.10. The electron orbiting around the nucleus 

Rutherford proposed a microscopic planetary system:  an electron with negative charge orbiting a 

nucleus with positive charge. The Rutherford Model was in agreement with the experiments of Geiger 

and Marsden where a N number of α particles which have positive charge hit a sheet of Gold, Aluminum 

or Cooper.  After, a certain number of these α particles collide on the detector screen (detected as flashes) 

which was located at a determined angle [4].  A certain number of α particle was deviated by the 

interaction with the nucleus which has also a positive charge.  The deviation is consequence of the 

electrical force of repulsion between the α particle and the nucleus.  Therefore, this experiment only can 

be explained if the nucleus is constituted by a nucleus of positive charge with the electrons with negative 

charge moving around it at a large distance or radius respect to the nucleus [4], [5], [8].  Rutherford 
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obtained a formula (in agreement with Geiger and Marsden formula) for the number of the particles 

(number of flashes) which collides on the detector screen [4]:    f=
NntZ2e4

4R2(
1

2
mvo2)

2
sen4(

Φ

2
)
  

N:  number of α particles which hit the sheet of Gold     e:  electron charge    

n:  number of atoms by volume of the sheet   Φ:  angle deviation of α particles        

Z:  nucleus charge                   K=
1

2
mvo

2:  kinetic energy of the α particles 

R:  distance between the sheet and the detector screen   t: thickness of the sheet    

Nevertheless, the electromagnetic theory of Maxwell has established that an accelerated charged particle 

as the electron emits electromagnetic radiation (photons) during the accelerated motion [2].  Besides, the 

electron losses mass during the emission.  At the Rutherford model, the electrons move around the 

nucleus with acceleration because the velocity direction is changing every time.  Therefore, the electrons 

will radiate electromagnetic energy in a continue form.  As consequence of it, the electrical force will put 

the electrons towards the core of the nucleus [4].  Besides, it will result in a continuous spectrum of 

energy emission of the electron and in instability of the atom (atom collapse) and the matter in general.  

But, it doesn´t occur in the reality:  there is a discrete spectrum of energy emission of the electron at the 

atom and there is stability at the atom.  Then, it was necessary to obtain other model to explain this fact.  

After, Bohr proposed a model with some postulates to solve the instability of the atom. 

4.3. Spectral Lines of the Atom 

The radiation emitted by a blackbody is continuous because it contains energy of all frequencies [4], [5].  

It was used electron oscillators at the cavity walls with emission of discrete energy (quantization) 

proposed by Planck to explain this continuous radiation at the region of low and high frequency.  It is 

used the same energy quantization at the emission or absorption of energy by the electrons at the atom.  It 

is because the blackbody radiation at the macroscopic scale is also emitted by electrons of the atoms at 

the walls of the blackbody. Then, it is evident that the same approach is possible to use to analyze the 

atom at the microscopic scale. Nevertheless, atoms (as Hydrogen for example) and other sources of 

elements (electric discharge in a sodium lamp or neon gas tube) emit discrete spectral lines of 

frequencies.  By researching those spectral lines, it was possible to understand the internal structure of 

the atoms [4], [5]. Mendelev established the periodic classification of the elements in the periodic table.  

The relation between the spectroscopy and the internal structure of the atoms was evident with this 

research [4], [5].  Then, Balmer found empirically a formula which described the experimental spectral 

lines of the Hydrogen. It was a proof of the internal structure of the atom and the energy emission of 

electrons when they jump from one energy level to another [4], [5].  The Balmer formula was very 
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important to test the Bohr Model.   The formula found by Balmer is as follows:  
1

λ
=R(

1

22
−
1

n2
)   

λ=3645.6 (
n2

n2−22
)(A)̇ 

n=3, 4, 5, ….     R=1.097313414*10
7
 m

-1
: Rydberg constant 

For n=3, the wavelength of the spectral line is   λ=6562.08 Ȧ.    The experimental value of the spectral 

line is 6562.10 Ȧ.  There is a good concordance between the experimental value and the Balmer formula.  

The regularity found at the Hydrogen Atom was discovered also in other elements of the periodic table 

[4], [5].  For example, Paschen found a formula for the spectral lines of the Hydrogen at the infrared zone 

of the spectrum [5].  After, it was found the Lyman and Brackett series for the ultraviolet and infrared 

zone of the spectrum [5].  Those formula are as follows: 

 
1

λ
=R(

1

32
−
1

n2
)      n=4,5,6……. Paschen Serie 

1

λ
=R(

1

12
−
1

n2
)       n=2,3,4……. Lyman Serie 

1

λ
=R(

1

42
−
1

n2
)       n=5,6,7,…….Brackett Series 

Then, it was concluded that the discrete spectral lines can be adjusted by the formula [4], [5]:   
1

λ
=

R(
1

n2́
−
1

n2
)    wavelength spectral lines   n>n´ 

f=cR(
1

n2́
−
1

n2
)          c=λf               frequency spectral lines 

ΔE=hcR(
1

n2́
−
1

n2
)    ΔE=hf            energy spectral lines 

4.4. Bohr Model for the Hydrogen Atom, analogy with the blackbody cavity and reasons for the 

determined electron radius 

In 1913, Bohr found a solution to explain the stability of the atom based in the hypothesis introduced by 

Planck (1900) at the Blackbody radiation.   Besides, Einstein contributed with the approach of 

quantization for the light radiation at the Photoelectric Effect (1905) [4], [5], [9].  This research was 

about the quantization of the absorption, emission and transmission of the radiation energy.  Then, Bohr 

introduced the concept of discrete quantum energy emission by the electrons at the atom with energy 

ΔE=hf.  It was analogous to the discrete energy emission (quantized energy) by the electron oscillators at 

the cavity of the Blackbody of Planck and the quantization of the radiation at the Photoelectric Research 

of Einstein. The postulates of Bohr are as follows: 

1.- The electrons doesn´t radiate energy in the stationary orbits around the nucleus. The electron is 

accelerated at the stationary orbits because the velocity changes the direction in the circular motion 
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around the atom. The classic electromagnetic theory of that accelerated electron radiates electromagnetic 

radiation is not applied.   

2.- The electron only can orbit around the nucleus in stable orbits or stationary levels with constant 

energy.  The electrons can change its orbit (which has a specific radius) when they emit or receive 

energy. Then, the atoms gain or lose energy when the electrons pass from one orbit to another. 

3.- The energy of the photon emitted or absorbed by the electron at the transition from one orbit to 

another is equal to the energy difference between the respective energy of the electron orbits where has 

occurred the transition: 

ΔE=Ei-Ef=hf=hc/λ   for emission energy  Ei>Ef  (Ei is less negative than Ef) 

Bohr could explain the atom stability with those postulates and obtain a formula for the quantization of 

the energy, velocity, radius, angular momentum, frequency and wavelength of the radiation emitted or 

absorbed [4], [5], [8], [9].  The quantization formula of Bohr [4], [5] is as follows:  ∮pds=nh   where    

p:  momentum      p=mv 

s:  traveled distance of the electron around the nucleus:    ds=2πdr 

h:  Planck Constant     n:  integer number:  main quantum (level) number  

Bohr also postulated a quantization for the angular momentum: L=
nh

2π
        

Nevertheless, those postulates did not explain why there is no emission of radiation when the electrons 

orbit around the nucleus. Later, it could be explained by using the approach of De Broglie wave-particle 

duality. The experiment of Franck Hertz was other proof (in addition of the Blackbody radiation and the 

Photoelectric Effect) of the existence of stationary states in the atom and the Bohr model and postulates. 

The experiment consisted in the process of excitation and de-excitation of a gas sample. This is utilized 

the electroluminescence phenomenon. There is a filament F that emits electrons that are accelerated 

towards a grating by means of a variable potential V. The space between the filament and the grating is 

occupied by mercury vapor (gas). A small potential difference is applied between the grating and the 

plate where it is measured the current. Due to the polarity of this potential, the electrons are decelerated 

and the current in the plate is measured with the galvanometer [4]. 

When the accelerated electrons do not have enough energy to bring the atomic system to an excited state, 

they pass through the region between the filament and the grating, losing a minimum part of their energy 

and the current measured in the galvanometer has a large value.  If the energy of the electrons is greater 

than or equal to the difference between the energies of the ground state and the first excited state, the 

electron will lose much of its energy which will be converted into excitation energy of the atomic system. 
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The current measured in the galvanometer will be very low since fewer electrons will arrive per time unit 

[4]. 

 

Fig.11. Franck-Hertz Experiment: Graph of current intensity versus voltage 

By increasing the accelerating potential, the energy of the electrons will have a value that after causing an 

excitation will have enough energy left to cause more excitations. The current measured in the 

galvanometer will drop further [4].  The first valley V1 in the graph corresponds to the electrons that lose 

almost all of the kinetic energy in one interaction. The second valley V2 in the graph corresponds to the 

second excitation of the electrons that has excited two atoms [4].  Due to the tendency of every atom to be 

in its fundamental or stationary state, the energy transferred from the electron to the atom is emitted by 

the atom in the form of radiation [4].  This can be calculated by measuring the wavelength of the emitted 

light and calculating its energy:  ΔE=hc/λ    ΔE=hf     c=λf .          

The difference in energy between the ground state and the first excited state according to Bohr postulate 

is:  ∆E=E1−E2=
hc

λ
 .  The spectroscopy result is  ∆E =4.86 eV. This corresponds to the energy 

emitted by the atom to return to its fundamental state [4].  The experimental result is 4.9 eV which is 

possible to observe at the graphic. Thus, it is required an accelerating potential of 4.9 V for the electron to 

cause an atomic excitation of 4.9 eV [4].  This coincidence between the values of the energy of the 

emitted radiation and the electron energy necessary (potential difference or voltage) to achieve an 

excitation is an evident and clear proof of the existence of stationary states in the atom and the Bohr 

model and the postulates [4].  This experiment is similar to the Photoelectric Effect but instead of light 

radiation incident, it is used electrons. As the light, the electrons can give their energies as discrete packet 

of energy when it is is greater than or equal to the energy difference between the energies of the ground 

state and the first excited state. The lost energy of the electron is converted into excitation energy of the 

atomic system as at the Photoelectric Effect.  There is analogy of the atom with the blackbody research 

from Planck and harmonic oscillators.  The electromagnetic radiation at temperature T inside a cubic 

shaped cavity with L-edge and metal is studied at the blackbody cavity.  The allowed electromagnetic 

waves  have wavelength (2n+1)λ=L with n an integer (the electric field must be zero at the walls) [3]. The 
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cavities corresponds to the respective orbits at the atom. Then, the correspondence analogy with the atom 

is as follows: 

λ=ao    L=Δr 

(2n+1)λ=L      (2n+1) ao= Δr 

r1-ro=(2n+1) ao   ro=ao 

r1=ao+(2n+1) ao      r1=4 ao         n=1 

r2=r1 +(2n+1) ao      r2= 4 ao+(2n+1) ao      n=2      r2=9 ao      

Then, the formula for the radius of the electron orbit at the atom is as follows: 

 rn=n
2
 ao  

This formula is in concordance with the quantization formula obtained by applying the postulates of Bohr 

and the De Broglie duality.     

Besides, it is possible to explain why the electron has determined stationary radius at the atom. The 

planets are orbiting around the Sun due the gravitational field in the planetary system. The curvature of 

the space-time causes the motion of the planets as it is explained in General Relativity.  Also, there is a 

perihelium precession of the Mercury orbit due the high relativistic velocity and the strong curvature or 

field between Mercury and the Sun.   At the atom, the electrons are orbiting around the nucleus due the 

electrical field.  The electrical field determines the restricted radius at the atom.  In addition, there is also 

a precession motion of the electron orbits due the high relativistic velocity. 

4.5. De Broglie duality: no energy radiation for electron as wave  

De Broglie established that the matter has properties of wave and particle.  It is in accordance with the 

symmetry property of the Universe.  Thus, the waves have properties of particles and the particles have 

properties of waves: wave-particle duality [4], [5], [9].   The formula that relates the mass of the particle 

and the wavelength of the wave is as follows:   λ=
h

mv
  

E2=p2c2+mo
2c4    Relativistic Dirac equation   For light mo=0 

E2=p2c2       E=hf         hf=pc       f=c/λ          h
𝑐

𝜆
=pc     

p=
h

λ
        momentum for a wave 

p=mv        momentum for a particle 

mv=
h

λ
       λ=

h

mv
      De Broglie wavelength for a particle 
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Therefore, the electron has properties of waves with De Broglie wavelength which satisfied the Wave 

Schrödinger Probabilistic Equation. At the Schröndiger Approach, the position (electron region), 

momentum and energy of the electron are probabilistic (no definite).   Other approach is that the electrons 

are guided by a pilot wave like a surfer on a wave.  At this approach, every electron always has a definite 

position like the surfer:  an electron is pushed or guided by a guiding pilot wave which influences the 

electron´s location.  It is a new interpretation of quantum mechanics.   

It is possible to explain the postulate of Bohr. The electron moves around the nucleus in a perimeter equal 

to 2πr. At the stationary level, the wavelength of the electron is equal to the distance traveled by the 

electron 2πr.  If 2πr is not equal to this wavelength, then the electron needs to move to other orbit where 

2πr=nλ. It corresponds to other stationary level for the electron and n is the orbit number n=1,2,3…. [4], 

[5], [9].   

 

Fig.12. Motion of the wave electron by adjustment of De Broglie waves 

It is the reason that the electron doesn´t radiates energy at the stationary level:  the electron doesn´t have 

additional energy E=hf to radiate.  All of its energy E corresponds to the mass-energy equivalent of the 

electron (E=mc
2
) at the stationary level with m=

h

λv
  where λ and v are constant (λ=2πr):  m constant. 

Thus, if the electron receives additional energy or losses energy, the electron cannot remain in this orbit 

because the electron has other energy E which correspond to other wavelength λ=hc/E (other radius r) 

and other mass-energy equivalent m=E/c
2
.   As consequence of it, the wavelength λ is not equal to 2πr at 

this orbit anymore.  Then, the electron does the transition to other stationary where nλ=2πr (n=1,2,3,…) 

with the emission of electromagnetic radiation or photons.   The new stationary orbit for the electron with 

other radius r has other velocity and so, there is a new wavelength λ=
h

mv
 for the electron.  Besides, the 

vacancy left in the atomic structure by the ejected electron due the energy absorption at the photoelectric 

effect is filled by one of the electrons from a higher shell or by a free electron from outside the atom. This 

transition is accompanied by the emission of a photon. This transition occur without energy absorption of 

the electron of the higher shell.  It is because the atoms and the matter always prefer and change their state 

to a stationary level or minimum energy after an excited level.  It is other principle or law of our universe 

as the symmetry properties. 
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The wave properties of macroscopic objects are not evident because they have a very small wavelength 

(E=hc/λ:  high energies and f=c/λ:  high frequencies). At the atomic scale, the electron wavelength is not 

so small and its wave behavior can be observed. In 1927, Davisson and Germer verified the wave 

character of the electrons by means of an electron diffraction experiment [5]. 

The electrons emitted by a metallic filament are accelerated through the  potential difference ΔV and 

then, they are impinged on a nickel crystal [5]. By applying the law of energy conservation, this is 

possible to obtain: 

K=U=eΔV    K=
1

2
mv2=

p2

2m
=eΔV    U:  potential energy  V:  voltage 

p=√2meΔV        λ=
h

p
=

h

√2meΔV 
        De Broglie wave 

By replacing the values of h, m, e and ΔV=150 V, the wavelength is λ=1 A. A crystal can diffract x-rays 

with wavelength of 1 A. This diffraction is due to the fact that the crystal contains defined planes which 

are called Bragg planes where the atoms are located [5], [13]. For the case of light wave, the reflected 

light in the Bragg planes interferes constructively with the condition that the difference in travel distance 

between neighboring planes is equal to an integer number of wavelengths [5], [13].  The Bragg formula is 

as follows:   nλ=2dsenθ.  This formula that is applicable for the light would be also valid for electrons if 

they also behave as waves [5].  The detector was found to measure an angle of Φ=50
o
,  Φ+2θ=180

o
, 

θ=65
o
, with a voltage of ΔV=54 V. 

 

Fig.13. Electron Diffraction 

Since the spacing of the reflective Bragg planes of the crystal was d=0.91 A and n=1, the wavelength 

was:  λ=2(0,91)sen(65)=1,65 A.  De Broglie wave was:  λ=
h

p
=

h

√2meΔV 
    ΔV=54 V   λ=1.67 A . 

The experiment of Davisson and Germer demonstrated that electrons diffract and behave like waves as 

the De Broglie wave-particle duality has predicted. In 1927, Thomson also confirmed the electron 

diffraction [5].  In 1929, Estermann and Stern confirmed experimentally that helium and hydrogen 

molecules also diffracted according to De Broglie's theory.  Later, neutrons were also found to be 
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diffracted according to De Broglie.  It showed that the wave-particle duality is for all particles:  both 

matter and light can have corpuscular and wave behavior [5]. 

By applying the wave-particle duality of De Broglie to the electron, it is possible to obtain the 

quantization of the angular momentum and the Bohr Postulate [4], [5]. The electron behaves like a wave 

and only a whole number of wavelengths can fit in the Bohr orbit:  nλ=2πr    n=1,2,3,…. 

λ=
h

mv
          De Broglie wavelength 

n
h

mv
=2πr    nh=2πmvr    p=mv    

nh=2πpr         nh=2πL            L=pr 

L=
nh

2π
             Bohr Angular Momentum        n=1,2,3,…. 

nh=2πmvr    mv2πr=nh    p=mv    s=2πr    ds=2πdr 

∮pds=nh     Bohr Postulate                           n=1,2,3,…. 

4.6. Quantization Formula and Rydberg constant deduction  

m
v2

r
=
kZe2

r2
     r=k

Ze2

mv2
        where k=1/(4πεo)         k=9*10

9
  N-m

2
/C

2
  

nλ=2πr         λ=
h

mv
     De Broglie wave and adjustment of waves at the orbit 

n
h

mv
=2πr              r=

nh

2πmv
   

nh

2πmv
=k

Ze2

mv2
           k=1/(4πεo)     

v=
Ze2

2εonh
          Quantization of the velocity 

r=
nh

2πmv
  

r=
εoh

2

πmZe2
n2 Quantization of the radius ao=

εoh
2

πme2
=0,529 A Bohr radius          

E=K+U              Total Energy for the electron at the atom 

E=
1

2
mv2−

kZe2

r
            m

v2

r
=
kZe2

r2
               

1

2
mv2=

kZe2

2r
 

E=
kZe2

2r
−
kZe2

r
   

E=−
kZe2

2r
            Total Bound Energy for the electron at the atom 
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r=
εoh

2

πmZe2
n2           k=1/(4πεo)                    

E=−
mZ2e4

8εo2n2h2
     Quantization of the energy 

L=pr                     L=mvr 

v=
Ze2

2εonh
       r=

εon
2h2

πmZe2
        

L=m
Ze2

2εonh
 
εon

2h2

πmZe2
            

L=
nh

2π
                   Quantization of the angular momentum 

If the electron jumps from one orbit to another, the absorption or emission of the energy is equal to the 

energy difference between the two levels of energy where the transition has occurred.  At the Planck 

Research, it was established that the energy is emitted as packets of discrete energy ΔE=hf due the 

electron oscillators at the cavity.  At the atom, the energy is also emitted as packets of discrete energy 

ΔE=hf.  The proportional constant is the Planck Constant h. Therefore, there is analogy between the 

blackbody radiation and the atom radiation. If the radiation is emitted, the formula is ΔE=E-E´=hf.             

E:  energy of the initial level or orbit:  E is less negative than E´ 

E´: energy of the final level or orbit: E>E´       |E|́>|E| 

n:  quantum number of the initial level or orbit 

n´:  quantum number of the final level or orbit      n>n´  for energy emission 

E=−
mZ2e4

8εo2n2h2
     E=́−

mZ2e4

8εo2n2́h2
           ΔE=E−E ́

ΔE=
mZ2e4

8εo2h2
(
1

n2́
−
1

n2
)      discrete spectral lines for the energy emission 

It is possible to compare this formula with the Balmer formula (Z=1) of frequency and to conclude which 

factors are the Rydberg constant and to obtain the quantization energy formula of Bohr: 

ΔE=
me4

8εo2h2
(
1

n2́
−
1

n2
)      f=cR(

1

n
−́
1

n2
)      R=

me4

8εo2ch3
    ΔE=hf 

ΔE=hf= 
mZ2e4

8εo2h2
(
1

n2́
−
1

n2
)  

f=
mZ2e4

8εo2h3
(
1

n2́
−
1

n2
)    frequency spectral lines for energy emission  n>n´ 

c

λ
=
mZ2e4

8εo2h3
(
1

n2́
−
1

n2
)      c=λf 
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1

λ
=
mZ2e4

8εo2ch3
(
1

n2́
−
1

n2
)  wavelength spectral lines for energy emission n>n´ 

If the frequency formula is compared with the Balmer series (Z=1), it is possible to obtain the Rydberg 

Constant:      

f=cR(
1

n
−́
1

n2
)      f=

mZ2e4

8εo2h3
(
1

n2́
−
1

n2
)            Z=1     

cR=
me4

8εo2h3
           R=

me4

8εo2ch3
                 Rydberg Constant       

By replacing the values of m, e, εo, c, h the Rydberg Constant is: 

R=1.097*10
7
 m

-1
:  Rydberg Constant 

ΔE=hf= 
mZ2e4

8εo2h2
(
1

n2́
−
1

n2
)     ΔE=hf=hcR𝑍2(

1

n2́
−
1

n2
)  

The agreement between the Balmer formula (empirical and experimental formula) and the Bohr formula 

(formula obtained from the Bohr Postulate) implies the concordance between the theory and the 

experimental data. 

It is possible to obtain the Rydberg constant and the quantization formula (Z=1) based in the period of the 

electron around the nucleus: 

v=
2πr

T 
        v2=

4π2r2

T2
         T=1/fr      fr:  revolution frequency of the electron 

E=K+U                    E=
1

2
mv2−

ke2

r
      

m
v2

r
=
ke2

r2
               mv2=

ke2

r
            

1

2
mv2=

ke2

2r
 

E=
1

2
mv2− mv2     E=

ke2

2r
−
ke2

r
 

E=−
1

2
mv2=−K     or      E=−

ke2

2r
  

2E

m
=v2    E in absolute value     

2E

m
=
4π2r2

T2
        T=1/fr 

2E

m
=4π2r2fr

2
       

√2√E

2πr√m
=fr      E=

ke2

2r
        r=

ke2

2E
       k=1/(4πεo) 

fr=
4εo√2E

3/2

e2√m
           revolution frequency of the electron 

ΔE=hcR(
1

n2́
−
1

n2
)       En=−

chR

n2
      |En|=

chR

n2
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fr=
4εo√2(chR)

3/2

e2√mn3
  

f=cR(
1

n2́
−
1

n2
)    n>n´   Balmer Series   for n´=n-1, it is obtained: 

f=cR(
1

(n−1)2
−
1

n2
)        f=cR(

2n−1

(n−1)2n2
)      fc=cR

2

n3
        n>>1 

For values of n very large in comparison with 1 (classic continuous where f is very small that the discrete 

lines can be not observed and ΔE is also very small), fc is:     fc=cR
2

n3
        R=

me4

8εo2ch3
      fc=

me4

4εo2h3n3
 

It is the continuous region which occurs for quantum numbers n very large where the levels of energy are 

so close that they form a continuous region and  the process is almost continuous and no discrete [9].  

Then, this classic result must be in concordance with the formula development for the revolution 

frequency of the electron for the classic case fr =fc.  It means that for quantum numbers very large, the 

frequency of the radiation emitted by the electron is equal to the revolution frequency of the electron as 

the classic electrodynamic predicts [9]:   fc=fr     cR
2

n3
=
4εo√2(chR)

3/2

e2√mn3
   for quantum numbers very large  

R=
me4

8εo2ch3
      

By replacing this value in the energy formula, it is obtained: 

En=−
chR

n2
                 En=−

me4

8εo2n2h2
    quantization of the electron energy  

ΔE=E-E´=
me4

8εo2h2
(
1

n2́
−
1

n2
)         spectral  emission energy   n>n´ 

f=cR(
1

n2́
−
1

n2
)    f=

me4

8εo2h3
(
1

n2́
−
1

n2
)        frequency of the energy emission 

ΔE=hf= 
me4

8εo2h2
(
1

n2́
−
1

n2
)        spectral emission energy 

fr=
4εo√2(chR)

3/2

e2√mn3
     fr=fc=cR

2

n3
=

me4

4εo2h3n3
   electron revolution frequency  

r=
ke2

2E
        En=−

me4

8εo2n2h2
     k=

1

4𝜋𝜖𝑜
 

r=
n2εoh

2

πme2
     r=n2ao   radius quantization     ao=

εoh
2

πme2
  Bohr radius                            

K=|E| in absolute value  
1

2
mv2=K=

ke2

2r
      E=−

ke2

2r
    V=−

ke2

r
=−2K    

E=− 
me4

8εo2𝑛2h2
         K=

me4

8εo2n2h2
    V= - 

me4

4εo2n2h2
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Other form to obtain the same formula is as follows: during the bound process of the electron (ni>>nf), it 

is emitted radiation energy V=nhfc (nf=n) of frequency fc (due the electrical potential energy) equal to the 

double of the kinetic energy of the electron 2K in the final orbit or level [1].   

K:  kinetic energy of the electron     ni: initial level      nf=n: final level 

V=nhfc:  potential energy:  emission energy due the process of bound of the electron where ni>>nf,  Eni 

≈0.   This emission energy corresponds for Δn=ni-nf very large.   

It is the continuous region (large quantum numbers) where the levels of energy are so close that they form 

a continuous region.   

Then, the spectral emission frequency fc must be equal to the revolution frequency of the electron fr at the 

final state for this continuous region  fc = fr . 

K=V/2     K=nhfc/2       fc=2K/(nh)                  

v=
2πr

T 
                     v2=

4π2r2

T2
             

 
1

2
mv2=K               

2K

m
=v2            

2K

m
=
4π2r2

T2
                

2K

m
=4π2r2fr

2
          T=1/fr    

√2√K

2πr√m
=fr              K=

ke2

2r
        r=

ke2

2K
     k=1/(4πεo) 

fr=
4εo√2K

3/2

e2√m
         fc = fr    for Δn=nf-ni large 

2K

nh
=
4εo√2K

3/2

e2√m
     

K=
me4

8εo2n2h2
             E=-K      E=−

me4

8εo2n2h2
 

ΔE=E-E´=hf=
me4

8εo2h2
(
1

n2́
−
1

n2
)      spectral  emission energy 

f=
me4

8εo2h3
(
1

n2́
−
1

n2
)        frequency of the energy emission 

fr=
4εo√2K

3/2

e2√m
        K=

𝑚𝑒4

8𝜀𝑜2𝑛2ℎ2
            fr=

me4

4εo2h3n3
 

fc=2K/(nh)             fc=
me4

4εo2h3n3
               fr =fc          

r=
ke2

2K
          K=

me4

8εo2n2h2
     r=

n2εoh
2

πme2
     r=n2ao    ao=

εoh
2

πme2
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4.7. Correction of the nuclear mass 

It is necessary for a better agreement with the experimental results to take in account the finite mass of the 

nucleus and its effect at the motion of the electron [9].  It is possible to apply momentum conservation: 

mv=MV     V=(m/M)v      m: mass of the electron   M:  mass of the nucleus 

KM=
1

2
MV2=

1

2

m2

M
v2=

m

M
K   where K=

1

2
mv2 

If M has a very high value M>>m (nucleus with infinite mass), then KM is negligible and the nucleus can 

be considered as fixed.  If it is considered the finite mass of the nucleus, then it is possible to consider the 

nucleus also as fixed  but the electron mass is the reduced mass of the system µ instead of m [9]. The 

formula for the reduced mass is obtained by applying the conservation rule for the kinetic energy for the 

two cases:  the electron with mass equal to the reduced mass µ moving around the fixed nucleus and the 

electron moving around the center of mass with the nucleus also moving around the center of mass which 

also occurs in binary stars. 

K=
1

2
mv2=

p2

2m
      p=mv  p:  electron momentum       P:  nucleus momentum    

p=P    mv=MV   where v is the electron velocity and V is the nucleus velocity 

The conservation rule for the kinetic energy is as follows: 

p2

2µ
=
p2

2m
+
p2

2M
         

1

µ
=
1

𝑚
+
1

𝑀
          µ=m(

M

m+M
)  

It is possible to do the analysis for the center of mass (CM) as follows: 

 

Fig.14. Electron and nucleus orbiting around the common center of mass 

By considering the center of mass in r=0, it is obtained: 

mr=MR             R=(m/M)r      r´=r+R          r´= r+(m/M)r          

r´=
M+m

M
r      r´=

m

µ
r              r=

𝑀

𝑀+𝑚
r´       r=

µ

m
r´ 

L=µvr´= m(
M

m+M
)v
M+m

M
r=mvr         L=µvr´=mvr= 𝑛

ℎ

2𝜋
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L=pr=mvr=mv 
M

M+m
r´=

mM

(M+m)
vr=́µvr´   L =mvr=µvr´= n

h

2π
  

It is possible to obtain all the quantization formulas by replacing µ by m and the nucleus is at fixed 

position and at distance r´ from the electron.   

µvr´=n
ℎ

2𝜋
   n=1,2,3,…..    r´=

nh

2πµv
        µ=

mM

(M+m)
 

µ
v2

r
=́k

e2

r2́
       r´= k

e2

µv2
      

nh

2πµv
=k

e2

µv2
       k=1/(4πεo)     

v=
e2

2εonh
         Quantization of the velocity 

r=́
nh

2πµv
          v=

e2

2εonh
 

r=́
εoh

2

πµe2
n2       Quantization of the radius 

r=
µ

m
r´            r=

εoh
2

πme2
n2             ao=

εoh
2

πme2
   Bohr radius 

If we consider the electron moving around the center of mass CM, it is possible to obtain the radius r as 

follows: mw2r=k
e2

r2́
=k

e2

r2
µ2

m2
    r´=

m

µ
r 

It is possible to obtain the same equation as before by replacing: 

mw2r=mw2
µ

m
r=́µw2r=́ µ

v2

r
=́k

e2

r2́
      v=wr´    r´=

m

µ
r 

L=µvr´=µ(r´w)r=́µwr´2=m(
M

m+M
)w(

M+m

M
)2r2=m

M+m

M
wr2=n

h

2π
 

m
M+m

M
wr2=n

h

2π
   

m
M+m

M
wr2=m

m

µ
wr2=n

h

2π
            w=

nhµ

2πm2r2
   

By replacing w in the force equation: mw2r=k
e2

r2́
=k

e2

r2
µ2

m2
, it is obtained: 

m(
nhµ

2πm2r2
)2r=

1

4πϵo

e2

r2
µ2

m2
            k=

1

4𝜋𝜖𝑜
  

r=
εoh

2

πme2
n2      w=

πe4µ

2n3h3ϵo2
          r´=

m

µ
r            r=́

εoh
2

πµe2
n2 

r´=
𝑛ℎ

2𝜋µ𝑣
             v=

nh

2πµr´
                    v=

e2

2εonh
 

v=r´w=
m

µ
rw=

𝑚

µ

εoh
2

πme2
n2

𝜋𝑒4µ

2𝑛3ℎ3𝜖𝑜2
          v=

e2

2εonh
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E=−
ke2

2r´
            Total Bound Energy for the electron at the atom 

r=́
εoh

2

πµe2
n2           k=1/(4πεo)           

E=−
µe4

8εo2n2h2
     Quantization of the energy 

L=pr=mvr= µvr´     v=
e2

2εonh
        r=́

εon
2h2

πµe2
            

L=µ
e2

2εonh
 
εon

2h2

πµe2
       L=

nh

2π
         Quantization of the angular momentum 

ΔE=E-E´=hf=
µe4

8εo2h2
(
1

n2́
−
1

n2
)     E>E´  (E is less negative than E´)     n>n´  

f=
µe4

8εo2h3
(
1

n2́
−
1

n2
)     spectral lines for the frequency for energy emission  

ΔE=h
µe4

8εo2h3
(
1

n2́
−
1

n2
)      ΔE=

µe4

8εo2h2
(
1

n2́
−
1

n2
)   energy emission 

c

λ
=

µe4

8εo2h3
(
1

n2́
−
1

n2
)      c=λf 

1

λ
=

µe4

8εo2ch3
(
1

n2́
−
1

n2
)   spectral lines for the wavelength for energy emission 

If this formula is compared with the Balmer series, it is possible to obtain the Rydberg Constant for the 

nuclear mass finite: 

1

λ
=RM(

1

n2́
−
1

n2
)     RM:  Rydberg constant for the nuclear mass finite 

f

c
=RM(

1

n2́
−
1

n2
)      f=cRM(

1

n2́
−
1

n2
)        f=

µe4

8εo2h3
(
1

n2́
−
1

n2
)       

cRM=
µe4

8εo2h3
  

RM=
µe4

8εo2ch3
         Rydberg Constant for the nuclear mass finite   

RM=
µ

m
R      R:  Rydberg constant for the infinite nuclear mass 

R=
me4

8εo2ch3
    µ=m(

M

m+M
)   

RM=
M

m+M
R=

1836

1837
R      M=1836 m  where m is the electron mass 

By replacing the values of m, e, εo, c, h, the Rydberg Constant is: 

R=1.097*10
7
 m

-1
:  Rydberg Constant     RM=1.09678*10

7
 m

-1
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4.8. Quantum Numbers (n, l, ml, ms) 

One of the most important advance at the research about the atom was the discover of the fine structure of 

the spectrum.  It was evident that the spectral lines that appeared as one line with low precision 

equipment were in reality a set or group of lines very near among them with better spectroscopy 

equipment [4].  The electron state can be defined by the four quantum numbers: n, l, ml and ms [4], [5]. 

n: main quantum number which defines the electron energy, the lineal momentum, the electron velocity 

and the radius of the orbit. This number was introduced by Bohr for the quantization of the main energy 

levels.   It is related with the magnitude of the volume occupied by the orbital which is the probable 

region where the electron is located. Also, this number takes in account the position of the electron 

around the nucleus at the ellipse approach (r=aon
2
) and the revolution velocity of the electron at the orbit 

[8].  Besides, this number n  is due the lineal momentum p of the electron at the Bohr Postulate:  

∮pds=nh.   n: main quantum number      n=1,2,3,…… 

l: orbital or azimuthal quantum number which defines the form and side of the orbital and the angular 

momentum.  This number takes in account the form of the displacement of the electron around the 

nucleus at the ellipse approach by using the angular momentum L.  The form of the displacement 

depends of the high relativistic velocity of the electron which causes the orbit precession. Therefore, it is 

necessary to apply Relativity Theory to the electron motion at the atom. As the angular momentum L 

describes the form of the electron orbit, the number l which is used for the quantization of the angular 

momentum makes restrictions to the possible orbits or sub-levels [4].  Then, new energy sub-levels were 

evident which were called spectrum of the fine structure or energy of fine structure. 

In 1916, Wilson and Somerfield found a general rule to explain the quantization of the Planck energy of 

an oscillator and the Bohr quantization for the angular momentum.  Somerfield considered elliptical 

orbits, the orbit precession and relativistic velocities for the electron with the introduction of  a new 

quantum number l and new energy sub-levels. It could explain the new energy sub-levels or structure fine 

observed in the spectral lines.  Nevertheless, the Bohr and Somerfield theories were useful only for 

simple systems with atoms with few electrons.  But, it was an advance to stablish later the quantum 

theory of Schröndiger and Heisenberg [9]. 

The rule of Wilson and Somerfield is as follows:  ∮pqdq=nqh , where the integral is on a complete 

cycle of the periodic motion of the electron, nq is an integer quantum number, p is the  momentum 

associated with the coordinate q. For example, for the one dimensional harmonic oscillator, the 

coordinate q is x and the momentum is px.  For a circular motion, the coordinate q is θ and pq is L: the 

angular momentum or q is s=2πr and the momentum is ps.  
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This consideration of the ellipse approach for the electrons was proposed due the analogy between the 

Planetary System and the Atom system [4].  The electron moves in an ellipse around the nucleus which is 

also located in one of the focus of the ellipse [4]. For example, the total energy of a simple harmonic 

oscillator in one dimension can be described as follows:   E=K+V=
px
2

2m
+
1

2
kx2         E =

px
2

2m
+
1

2
kx2 

1 =
px
2

2mE
+
x2

2E/k
 

Then, the quantization integral of Somerfield can be evaluated by doing a geometrical interpretation [9].  

The equation 1 =
px
2

2mE
+
x2

2E/k
  is the equation of an ellipse with coordinates (x,px) at the graph px versus x.  

The ellipse equation is as follows:    1 =
y2

b2
+
x2

a2
        b=√2mE   and a=√

2E

k
 

∮pxdx=A   where A is the area of the ellipse    A=πab 

∮pxdx=2πE√
m

k
  

The harmonic oscillator as for example a mass on a string [7] has the following equations:    F=-kx=ma       

a=-(k/m)x 

a=
d2x

dt2
              

d2x

dt2
=−

k

m
x        w2=

k

m
            

d2x

dt2
=−w2x   

d2x

dt2
+w2x=0         x=Acos(wt+θ)         

dx

dt
=-Awsen(wt+θ) 

d2x

dt2
=−Aw2cos (wt+θ)   

d2x

dt2
=−w2x 

−w2x+w2x=0       which satisfies the differential equation 

Then, the solution of the harmonic oscillator is x=Acos(wt+θ) with angular frequency w=√
k

m
        

w=2πf 

∮pxdx=2πE√
m

k
=
2πE

w
           ∮pxdx=

2πE

2πf
=
E

f
  

∮pxdx=
E

f
      E=nhf :   Planck quantization for the energy of an oscillator [7]. 

∮pxdx=nxh        n=1,2,3,…… 

The allowed oscillation states are a series of ellipses where h is the distance between two consecutive 

ellipses.  The classic or continuous situation is for h≈0 or large quantum numbers where all the values of 
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E are allowed [7].  It is possible to obtain all the quantization rules for the electron at the atom as it was 

done before:  ∮psds=nsh   s=2πr    p=mv 

mv2πr=nh        r=
nh

2πmv
          m

v2

r
=k

e2

r2
      

nh

2πmv
=k

e2

mv2
      k=1/(4πεo)     

v=
e2

2εonh
          Quantization of the velocity 

r=
εoh

2

πme2
n2      Quantization of the radius   ao=

εoh
2

πme2
   Bohr Radius    

E=−
ke2

2r
         Total Bound Energy for the electron at the atom   k=1/(4πεo)           

E=−
me4

8εo2n2h2
      Quantization of the energy 

L=pr              L=mvr     (constant in a circular motion) 

v=
e2

2εonh
       r=

εon
2h2

πme2
         L=m

e2

2εonh
 
εon

2h2

πme2
            

L=
nh

2π
               Quantization of the angular momentum 

∮psds=nsh     mv2πr=nh   pr=n
h

2π
         L=

nh

2π
 

It is possible to obtain the quantization rule for the angular momentum from the Somerfield rule as 

follows:   ∮pqdq=nqh    p=L  q=θ   nq=l (new number). 

∮Ldθ=lh      ∮dθ=2π     L=l
h

2π
    

It is in accordance with the Broglie approach that the waves associated with the electron (Schröndiger 

waves or Pilot waves) must form fixed waves at the stationary states at the atom 2πr=nλ  and λ=
h

mv
 :   

mv2πr=nh:    ∮psds=nsh. Besides, Bohr condition is the same as the Sommerfeld Condition.  Also, De 

Broglie approach can explain the no emission of radiation at the stationary state and the stability of the 

atoms [7]. 

For other hand, the physics variable necessary to determine the form of the electron trajectory is the 

angular momentum L which has magnitude and direction.  The formula of the angular momentum is as 

follows:  L⃗ =r xp⃗          L⃗ =r x(mv⃗ ).   The direction of the angular momentum is always perpendicular to the 

trajectory.  It is determined by the right hand rule.  The magnitude of the angular momentum is given by 

the next formula:  L=rpsenθ   L=rmvsenθ  where θ is the angle between the velocity (v) and the position 

vector (r).   Therefore, if the electron orbit changes of trajectory (r) or changes the velocity (v), then the 
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magnitude of L also will change.  Besides, if the orbit plane changes, the orientation or direction of L will 

change [4].  Thus, L is a good vector to describe the electron motion. 

For other hand, a high relativistic velocity was assigned to the electron in addition to the ellipse motion.  

It was necessary to apply Relativity Theory to the motion of the electron which experiments mass 

variation as consequence of the high velocity [4]. As result of this high velocity, all the elliptical orbit has 

a displacement around the nucleus.  It is known as precession which occur also at the Planetary System at 

the motion of Mercury around the Sun:  Perihelium Precession of Mercury [15]. At the Atom System, the 

electrons moves very close and with high velocities around the nucleus. Then, the relativistic effects are 

more evident for all the orbits or levels.   

In resume, it is necessary to consider two motions for the electron at the atom [4]:  the electron trajectory 

in an ellipse around the nucleus and the displacement of the ellipse around the nucleus or Orbit 

Precession. Then, the revolution velocity and lineal momentum  of the electron at the orbit  (determined 

by the number n) and the angular momentum L and the eccentricity of the ellipse or ellipse precession 

due the high velocities of the electron  which affect the form of the ellipse (determined by the number l) 

can take only restricted values [14]. Due those restrictions, the electron energy depends of two integer 

quantum numbers: n and l.   

As the angular momentum L describes the form of the displacement of the electron ellipse around the 

nucleus which considers the orbit precession due the high velocities, the number l makes restrictions to 

the possible orbits or sub-levels [4].  For a given value of n, l can takes of:  l:  0,1,2,3,..n-1     L=l
h

2π
.  

Besides, the number l is called by the letters:  s(0),p(1),d(2),f,a,h,i,…This quantum number is called also 

azimuthal.   

The Somerfield Model was a support for the quantization of the angular momentum and the new 

quantum sub-level [4].  At the Bohr Model, there are only energy levels n without sub-levels for each 

energy level.  Therefore, when the electron jumps from one orbit to other, there is only emission of one 

characteristic energy radiation [4].  But at the Somerfield Model, there is some restricted sub-levels l for 

each energy level n.  The sub-levels l within the same level n has energy values very similar.  The 

difference between the Bohr Model and the Somerfield Model is due the magnitude of the angular 

momentum or the Electron Precession (displacement of the ellipse around the nucleus) which is because 

of the high relativistic velocity of the electron.   

For example, If a sample of any element is excited, then some electrons can get the main level n=2.  

Because there are sub-levels, some electrons arrive to the next sub-levels of the main level n=2 l=0 L=0;   
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n=2 l=1  L=
ℎ

2𝜋
 . Then, there is emission of photons due the de-excitation. If the photons does the 

transition to the energy level n=1 l=0 L=0, then the energy of the photons are as follows: 

E21-E1=hf21 

E20-E1=hf20     

There are two spectral lines very close each other because they have similar energies.  This theoretical 

prediction is in agreement with the experimental results from spectroscopy.   If the de-excitation is from 

the level n=3 to the level n=1 l=0, then there are more spectral lines due there are more sublevels at the 

level n=3.  Nevertheless, Somerfield established that there are forbidden transitions between a sub-level 

and other level or sublevel.  Thus, there are selection rules for the energy jumps between the levels [4].  

The values of the quantization of the angular momentum from the Schröndiger Equation is as follows:   

L=√l(l+1) 
h

2π
 .  At the Bohr Theory, it is given by:   L=l

ℎ

2𝜋
. 

For l very large with respect to 1 (l>>1), the result of the Schröndiger Equation is equal to the result of 

Bohr Theory for the Hydrogen Atom without sublevels (L=n
ℎ

2𝜋
) which is in accordance with the 

correspondence principle. 

ml: magnetic quantum number which defines the component z (which is the direction of the external 

magnetic field) of the orbital angular momentum. The component of the orbital angular momentum with 

respect to the direction of the external magnetic field (Lz) is quantized with this number [4], [5]. It is 

related with the number and possible spatial orientations of the orbitals and Lz to be occupied by the 

electron for each value of l due an external magnetic field.  This number is product of the interaction of 

the orbital magnetic dipole momentum of the electron (due the orbital motion of the electron around the 

nucleus) with the external magnetic field.  This number can explain the additional energy sub-levels 

observed at the Zeeman Effect by the application of an external magnetic field.  Those additional energy 

sub-levels appears only with the application of an external magnetic field.  The Zeeman Effect is 

explained in quantum mechanic at the Schröndiger Theory by considering that the electron have 

electrical potential energy with the nucleus and potential energy of interaction with an external magnetic 

field.  [4], [5].  Thus, the quantum number ml appears as result of the external magnetic field. The values 

of ml depends of l.    

Lz=ml
h

2π
    ml=0,±1,±2,….,±l     ml:    magnetic quantum number 

In 1896, Zeeman examined what happens to the light emitted by a gaseous sample when the gas is 

subjected to the action of an intense magnetic field [4]. Zeeman found that the spectral lines appeared 
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thicker when the atoms were under the action of the magnetic field than when it was not applied [4].  It 

was found that each spectral line separated into groups of 3 lines. This effect of additional spectral lines 

by the effect of an external magnetic field was called the Zeeman effect [4], [5].  Those spectral lines are 

different to the group of lines very near among them due the quantization of the angular momentum and 

the orbital quantum number without an external magnetic field.   

A magnetic field is generated when a wire transports electrical current [4].  Besides, when a wire which 

transports electrical current is located in an magnetic field perpendicular to the wire, it is generated a 

magnetic force whose magnitude is:  F=l I B (l:  length of the wire).  Also, if a spire with current I is 

located in an external magnetic field, it is generated a torque.  The effect of this torque or pair of forces is 

the rotation of the spires [4].   

For other hand, at the hydrogen atom, the electron with negative charge rotates around the nucleus with 

considerable velocity.  It is possible to represent the electron as a spires with current I (due the electron).  

Then, the rotation of the electron generates a small magnetic field [4].   Thus, it is possible to associate to 

the electron an electric dipole momentum and a magnetic dipole momentum. 

Electric Dipole Momentum 

If the electric dipole p=qd is located in an electric field 𝐸 , the electric dipole changes the direction or 

orientation to the same direction of the electric field where F=qE [4].  The direction of the dipole charges 

is possible to know with a test charge with positive sign. The forces of the two charges are in opposite 

direction.  Then, it is generated a torque.  The effect of this torque or pair of forces is the rotation of the 

electric dipole in the clock direction which is the same direction of the electric field[4].   

 

Fig.15. Electric dipole in an electric field 

The most stable position for the dipole is when p and E are parallel because the electrical potential energy 

is minimum V=-qdEcos θ (less angle θ or less r):  V=-ke
2
/r. The lines of the electric field starts from the 

positive charge and finishes at the negative charge.  For example, the electric field can be produced by 

two metallic plaques or capacitors with different charge signs.  Therefore, the positive charge has less 

electrical potential energy:  V=-ke
2
/r V=-q d E cosθ (more negative, less distance between the charge and 

the plaque or less angle θ), if the positive charge is more close to the negative plaque.  At the same way, 
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a negative charge has less potential energy if the negative charge is more close to the positive plaque [4].

 

Fig.16. Electric dipole in an electric field generated by two capacitors 

Because the distance between the positive charge and the negative charge at the dipole is constant, then 

the position where the positive charge is more close to the negative plaque and the negative charge is 

more near to the positive plaque is when E and p are parallel.  It is necessary to do a work to change the 

dipole from the position of minimum energy (E and p parallels) to the position where the dipole has a 

certain angle with respect to the electrical field.  This work is the energy necessary to avoid that the 

torque (due the external electric field) brings the dipole to the equilibrium position or minimum energy. 

Thus, an electrical dipole has more energy if it has a certain angle respect to the direction of the field.  

The potential energy V of the dipole depends of the component of p in the direction of the electrical field 

E and the magnitude of E: 

V=-pEcosθ    p=qd          V=-q d E cosθ 

The potential energy is 0 for θ=90
o
, V=-pE (minimum energy) for θ=0

o
, V=+pE (maximum energy) for 

θ=180
o
.  Besides, the dipole has the tendency to be at the position of less energy.  It obeys the principle of 

minimum energy which also correspond to the stationary levels or energies at the atom. 

Magnetic Dipole Momentum 

A spire with current I has also a magnetic dipole momentum µ.  The magnitude of it is as follows:  µ=IA 

where I is the current that the spires transport and A is the area of the spires.  The direction of the vector 

µ⃗  is parallel to the direction of the angular momentum.  It is perpendicular to the plane of the spires or the 

plane of the electron orbit [4]. 

At the Hydrogen atom, the spires with current are the electron at the atom.  At the same way as the 

electric dipole, a magnetic dipole in a external magnetic field B experiments a torque.  The consequence 

of this torque is that the magnetic dipole u changes the direction or orientation to the same direction of the 

magnetic field B [4]. As the electric dipole, it is also necessary to do a work to change the magnetic 

dipole from the position of minimum energy (B and u parallels, θ=0
o
) to the position where the magnetic 

dipole has a certain angle with respect to the magnetic field.  This work is the energy necessary to avoid 

that the torque (due the external magnetic field) brings the magnetic dipole to the equilibrium position. 
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Thus, a magnetic dipole has more energy if it has a certain angle respect to the direction of the magnetic 

field [4].  The formula for the potential energy is as follows:   V=-µ B cosθ.  Respect to the Hydrogen 

atom, we have the next considerations [4]: 

-  As u=IA, u changes the value if the current I changes.  It is supposed that the area of the spires 

does not changes or changes very little and so, this variation is possible to neglect. 

- At the Hydrogen atom, the spires with current is the electron at the atom.  The value of I depends 

of the electron velocity and therefore, it depends of the lineal momentum p. 

- The direction of u is given by the direction of the perpendicular to the plane of the electron orbit 

which is the direction of the angular momentum L. 

 

Fig.17. Spires (espira) with current I and spire (espira) with the angular momentum L and magnetic 

dipole momentum. 

Therefore, if it is modified the vector L⃗ , then it is also modified the magnitude or direction of u⃗ .  In fact, 

the relation between the angular momentum and the magnetic dipole momentum is as follows:  u⃗ =

−
e

2m
L⃗   (u⃗  and L⃗  : antiparallel) 

L=rxp=rx(mv)            µ=IxA      L and µ have different opposite direction 

L=rp  L=rmv              µ=IA=Iπr
2
=
𝑒

𝑡
π r r=

𝑒

2

(2πr)

𝑡
r=
e

2
v r 

µ

L
=
e

2m
                        µ=

e

2m
L         

 

Fig.18. Precession of the angular momentum L around the magnetic field 
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The magnetic dipole momentum u or the angular momentum L associated with the spires (espira) with 

current which represents the motion of the electron describes a precession motion around the direction of 

the applied field B (z direction).  It is analogous to the motion of the spinning top.  When it moves around 

its axis, it also describes a motion (precession) around of the vertical axis which is the direction of the 

gravitational force or gravitational field.  Besides, it is necessary this rotation in order that it does not go 

down [4]. 

An additional potential energy appears due the application of the external magnetic field depending of 

the orientation or direction of the magnetic dipole momentum µ respect to the magnetic field B [4]: 

V=-uB cosθ         V=-uz B 

uz is the component of u in the direction of B which is the z direction. 

Then, the total energy of the electron with the application of the external magnetic field is:    E=Eo+V     

V=-uzB    E=Eo-µzB          

u=−
e

2m
L       µz=−

e

2m
Lz        E=Eo+

e

2m
LzB   

Lz is the component of L in the direction of B which is the z direction  

Eo:  electron energy without the external magnetic field. 

E:  Total energy of the electron with application of the external magnetic field. 

As the angular momentum L is quantized, then the component of L in the z axis (direction of the external 

magnetic field B), is also quantized: 

L=√l(l+1) 
h

2π
   for very large l:   L=l

h

2π
      Lz=ml

h

2π
 

ml:  magnetic quantum number  ml=0,±1,±2,….,±l 

For example, we have a sample of hydrogen gas where there are many electrons in a excited state with 

main quantum number n=2 and without an external magnetic field. Because, there are sub-levels, some 

electrons arrive to the next sub-levels of the main level n=2: 

n=2 l=0; n=2 l=1 

Then, there are emission of photons due the de-excitation. If the photons does the transition to the energy 

level n=1 l=0, then the energy of the photons are as follows:  E21-E1=hf21      E20-E1=hf20.  There are two 

spectral lines very close each other because they have similar energies. 

There are more spectral lines with the application of the external magnetic field.  For example, for the 

excited state n=2 l=0, some electrons only can take  angular momentum Lz=0 with quantum number 
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ml=0.  As we have mentioned before, for ml=0 (L and B are perpendicular or µ and B are perpendicular), 

it means that the application of the external magnetic field does not change the total energy of the 

electron Eo. For the excited state n=2 l=1, some electrons can take the states of angular momentum Lz 

with quantum number ml=1, ml=-1 or ml=0.  For ml=0, it means that the application of the external 

magnetic field does not change the total energy of the electron Eo  and L and B are perpendicular. 

The angular momentum Lz and the total energy for each excited level is as follows:  E=Eo+Eml      

E=En,l+Eml 

Lz=ml
h

2π
            E=En,l+

e

2m
LzB   

l=0,1,2,…n-1    ml=0,±1,±2,….,±l 

For the initial energy level n=2 l=1 and l=0, the next sub-levels are obtained: 

n=2 l=1 ml=1       Lz=
h

2π
             E2,1,1=E2,1+

e

2m

h

2π
B   

n=2 l=1 ml=-1     Lz=
−h

2π
             E2.1.−1=E2,1−

e

2m

h

2π
B   

n=2 l=1 ml=0      Lz=0               E2,1,0=E2,1 

n=2 l=0 ml=0      Lz=0               E2,0,0=E2,0 

E2,1 :  energy level with n=2, l=1 without the external magnetic field. 

E2,1,1 : energy level with n=2, l=1, ml=1 with the application of the external magnetic field. 

Then, at the de-excitation, it is emitted energy radiation with frequency given by the next formula:  

hf=E2−E1    

E1 (stationary state or base level): final energy level of the transition of the electrons from n=2 to n=1.  

The final energy E1 can take the next sub-levels: 

n=1   l=0  ml=0     Lz=0         E1,0,0=E1,0 

For the given example (from n=2, l=1 to n=1), the transitions are as follows: 

hf=E2,1,1−E1,0,0  

hf=E2,1,−1−E1,0,0  

hf=E2,1,0−E1,0,0   This line is the same as without external magnetic field. 

Therefore, there are new lines (three lines) for the initial level n=2, l=1 to the final level n=1 with the 

application of the external magnetic field.  It is due the interaction between the magnetic dipole 
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momentum of the electron and the external magnetic field.  There is one line more for the level n=2 due 

the next transition:  hf=E2,0,0−E1,0,0:  this line is the same as without external magnetic field.  In 

resume, it appears new group of spectral lines and each group corresponds to one of the spectral lines 

without the external magnetic field. 

For the same sample of hydrogen gas and for the de-excitation with an external magnetic field from the 

state n=3, l=2 to n=2, l=1, then there are more spectral lines than before. If the magnetic field is not 

applied, then it appears only one spectral line:  hf=E3,2−E2,1 . For the excited state n=3 l=2 and with 

the application of the external magnetic field, there are some sub-levels: 

n=3  l=2 ml=2      Lz=
2h

2π
              E3,2,2=E3,2+

e

2m

2h

2π
B   

n=3 l=2 ml=-2     Lz=
−2h

2π
             E3.2.−2=E3,2−

e

2m

2h

2π
B   

n=3 l=2 ml=1       Lz=
h

2π
              E3,2,1=E3,2+

e

2m

h

2π
B   

n=3 l=2 ml=-1      Lz=
−h

2π
             E3.2.−1=E3,2−

e

2m

h

2π
B   

n=3 l=2 ml=0        Lz=0                E3,2,0 =E3,2 

E3,2 :  energy level with n=3, l=2 without the external magnetic field. 

E3,2,2 : energy level with n=3, l=2, ml=2 with the application of the external magnetic field. 

Then at the de-excitation, it is emitted energy radiation with frequency given by the next formula:  

hf=E3−E2   E2 (stationary state or base level):  it is the final energy level of the transition of the 

electrons from n=3 to n=2. 

The final energy E2 (n=2, l=1) can take the next sub-levels: 

n=2 l=1 ml=1      Lz=
h

2π
             E2,1,1=E2,1+

e

2m

h

2π
B   

n=2 l=1 ml=-1    Lz=
−h

2π
             E2.1.−1=E2,1−

e

2m

h

2π
B   

n=2 l=1 ml=0      Lz=0              E2,1,0=E2,1 

Nevertheless, there are some restriction rules and all the transitions are not allowed.  For example, it is 

not possible the transition from n=3, l=2, ml=-2 to n=2, l=1, ml=1.  For the Hydrogen atom, it is possible 

the transitions with the next rule for the change of l and ml: Δl=±1   lf-li=±1    and   Δml=0,±1   

mf-mi=0 or ±1 where f denotes the final state and i the initial state. 

For the given example, the allowed transitions are as follows: 
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hf=E3,2,−2−E2,1,−1  hf=E3,2,1−E2,1,1     hf=E3,2,2−E2,1,1 

hf=E3,2,0−E2,1,1      hf=E3,2,0−E2,1,0     hf=E3,2,1−E2,1,0 

hf=E3,2,−1−E2,1,0    hf=E3,2,−1−E2,1,−1 hf=E3,2,0−E2,1,−1   

In resume, each spectral line without the magnetic field is divided only in three lines with the application 

of the external magnetic field by applying the transition rules.  These spectral lines have frequencies and 

energies very similar. If the electron has more number of possible states or levels, the number of the 

transitions increases and there are more spectral lines [4].  

ms: spin quantum number which defines the component z (which is the direction of the external 

magnetic field) of the angular momentum of the spin. This number is product of the interaction of the 

magnetic dipole momentum of spin of the electron (due the spin or model of electron rotation around its 

own axis) with the external magnetic field. Nevertheless, the spin cannot be understood as a rotated 

sphere because it is a property with quantum and relativistic origin. Nevertheless, it serves as a model to 

explain the theory.  Besides, the spin cannot be observed experimentally.  Only it is possible to mention 

that the spin is due to an intrinsic motion of the electron [4], [5]. Besides, it is related with the possibility 

that an orbital occupied by an electron accept or no other electron by applying the Principle of Exclusion 

of Pauli [8]. In 1925, Wolfgan Pauli discovered a fundamental principle known as Principle of Exclusion 

of Pauli.  This principle has established that two electrons cannot take the same set of quantum numbers: 

n, l, ml and ms.  Therefore, these four number cannot be the same for two electrons.  Then, two electrons 

of an atom must have as minimum one different quantum number.   

Also, this number can explain the two additional energy sub-levels observed at the Anomalous Zeeman 

Effect.  Those additional energy sub-levels appears only with the application of an external magnetic 

field [4].  In addition, this number can explain the antiparticles which appear at the Dirac Equation [8].  

The Hydrogen Spectrum was successfully explained by introducing the quantization rules for the energy, 

angular momentum, component z of the angular momentum and with the quantum numbers n, l and ml.  

Nevertheless, it was not possible to explain the spectrum for atoms with more than one electron.  Thus, it 

was necessary to introduce a new quantum number ms and the Principle of Exclusion of Pauli to explain 

the spectrum of more complex atoms.  This quantum number was called spin number [4], [5]. 

The existence of the spin or the electron rotation around its own axis was demonstrated experimentally 

by O. Stern and  W. Gerlach. In 1925, Goudsmit and Uhlenbeck introduced the hypothesis of the rotation 

of the electrons around of its own axis as the Planets at the Planetary System.  This rotation was called 

spin. Thus, it was introduced the fourth quantum numbers:  the spin number.  The electron can be 
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considered as sphere with a negative charge distributed on its surface uniformly.  This representation of 

the electron as sphere is not real but this model serves to explain the quantization of the magnetic dipole 

momentum due the spin.    Because the electron is a charged particle, this intrinsic motion of the electron 

generates an additional magnetic dipole momentum due the spin.  In 1928, Dirac demonstrated that the 

angular momentum of the spin is also quantized.  It was demonstrated by applying the relativity theory to 

the quantum theory of the particles as for example to the electron [4], [5]. 

At the Zeeman Effect, each spectral line is divided into three lines with the application of an external 

magnetic field.  Nevertheless, there are cases with more spectral lines. This effect is known as the 

Anomalous Zeeman Effect [4] which can be explained by using the spin of the electron. The rotation of 

the electron on its own axis or spin generated a current I. It is possible to consider the electron as formed 

by a set of disks located each other together.  Each disk has a certain charge on its surface and with the 

rotation, it is generated a current. Each disk is equivalent to a spire with current [4]. 

 

Fig.19. Schematic representation of the spin 

Thus, the behaviour of an small magnet and of a spire with current due the influence of an external 

magnetic field is similar [4].  The direction of the magnetic dipole momentum µ due the spin is from the 

South to the North by considering the electron as magnet.    

 

Fig.20. Spire with current I and small magnet 

As it was mentioned before, a spire with current has a magnetic dipole.  A magnetic dipole in an external 

magnetic field B experiments a torque or pair of forces.  The consequence of this torque is that the 

magnetic dipole changes the direction or orientation at the same direction of the external magnetic field B 

(minimum energy).  It is possible to calculate the magnetic dipole momentum associated with the spin 

motion of the electron. If the electron is considered as formed by a set of disks located each other 

together, the magnetic dipole momentum will be the sum of the magnetic momentum due each equivalent 
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spire or disks.  The magnetic dipole momentum due the spin motion is denoted by µs⃗⃗⃗  .  As in the orbital 

motion of the electron, the spin motion has associated the angular momentum to the magnetic dipole 

momentum. 

u=−
e

2m
L         µz=−

e

2m
Lz     us=−

e

m
Ls       µsz=−

e

m
Lsz 

Ls:  spin angular momentum  us :  magnetic dipole momentum of the spin.  
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In 1924, O. Stern and W. Gerlach demonstrated experimentally the spin of the electron. The experiment 

is based in the next fact:  the force that experiments a magnetic dipole in presence of a no uniform 

external magnetic field has a direction and magnitude which depends of the orientation between the 

dipole and the external magnetic field [4].  The force is variant with different values of magnitude and 

direction.  The field lines generated by an magnet are no uniform.  The lines are curves near the North and 

South Pole.  It is possible to observe by using strong filings.   Then, the direction and the magnitude of the 

field is variant. 

 

Fig.21. Field lines generated  

It is possible to do an experiment with a large magnet which generates an intense magnetic field (which is 

analogous to the external magnetic field).  Then, the iron filings are directed through the magnet.  

 

Fig.22. Magnet with the field lines and the iron filings  directed to the screen 
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The behaviour of the iron filings are as small dipoles (which are analogous to the electrons) which are 

deviated of the original trajectory.  It is supposed to observe at the screen a continue band blur.  It means 

that the dipoles has experimented different forces.  As the forces depend of the orientation between the 

dipole and the magnetic field, it implies that the dipoles has all the possible orientations.  It corresponds a 

different deviation for each orientation. 

At the same way, Stern and Gerlach performed an experiment where a beam of hydrogen atoms were 

directed  through the no uniform external magnetic field.  The hydrogen atoms had a particular state:  

hydrogen atoms with levels l=0.  Then, the orbital dipole momentum µ=0 µz=0 has the value of zero and 

also the component z (which is the direction of the external magnetic field B) of the angular momentum 

L=0  Lz=0 [4]. 

L=√l(l+1) 
h

2π
    for very large l,  L=l

ℎ

2𝜋
  

l=0  L=0   Lz=0  (Lz component of L in the direction of B) 

Besides, if L=0, then the orbital magnetic dipole momentum is also zero. 

u=−
e

2m
L         µz=−

e

2m
Lz    µ=0     µz=0 

Therefore, if the beam is deviated by the external magnetic field, it proves the existence of an additional 

magnetic dipole momentum which corresponds to the spin.  It is due to the fact that if the hydrogen atoms 

are only at states with levels l=0, then the only interaction with the external magnetic field is only with 

the magnetic dipole momentum of the spin.  Besides, it was observed only two lines very defined at the 

screen.  Therefore, there were only two deviation angles with respect to the incidence direction [4], [5]. 

The deviation of a beam of dipoles due an external magnetic field depends of the force that experiment 

the dipole. Besides, the force that experiment a magnetic dipole in an external no uniform magnetic field 

depends of the relative orientation between the magnetic dipole momentum µ and the external magnetic 

field B.  Therefore, the deviation of the dipoles is influenced by the orientation of the dipoles with the 

magnetic field [4].  There are three possible options for the dipole deviation: 

Parallel Orientation (↑):  The dipole is deviated to the direction where the magnetic field is more intense 

(North pole). 

Antiparallel Orientation(↓):  The dipole is deviated to the direction where the magnetic field is less 

intense (South pole). 

Intermediate Orientations:  The dipoles have intermediate positions between the parallel and antiparallel 

orientations. 
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If the magnetic dipole momentum of the spin have all the possible deviation, then, it will be observed a 

continue band or blur at the screen as the iron filings.  Nevertheless, there were only two lines very 

defined.  It means that the magnetic dipole momentum of the spin only have two orientations respect to 

the direction of the magnetic field B.  In resume, the experiment of Stern and Gerlach demonstrated the 

spin existence and the two orientations of the spin with respect to an external magnetic field.  Then, 

Goudsmit and Uhlenbeck established the condition that the angular momentum of the spin is quantized.  

They introduced the quantum number s which is analogous to the number l for the orbital motion or the 

orbital angular momentum. 

Ls=√s(s+1) 
h

2π
    s: spin orbital number for the angular momentum of the spin 

Due the experiment of Stern and Gerlach and by theoretical considerations, Goudsmit and Uhlenbeck 

imposed the condition that the spin orbital number s can take the value of 1/2: s=1/2:   Ls=
√3

2
 
h

2π
 

As the orbital magnetic dipole momentum, the interaction between the external magnetic field B and the 

magnetic dipole momentum of the spin generates an additional energy given by the next formula: 

V=-usB cosθ    V=-µsz B   (z axis:  direction of the external magnetic field B) 

Then, the total energy of the electron with the application of the external magnetic field is:    E=Eo+V         

V=-µszB   E=Eo-µ𝑠𝑧B      
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m
Ls       µ𝑠𝑧=−

e

m
Lsz       E=Eo+

e

m
LszB   

Lszis the component of Ls (angular momentum of the spin) in the direction of B which is the z direction at 

this case. 

E:  electron total energy with the application of the external magnetic field. 

Eo:  electron energy without the external magnetic field. 

As the angular momentum Lsis quantized, then the component of Lsin the z axis (direction of the external 

magnetic field B), is also quantized by using the quantum number ms: 

Ls=√s(s+1) 
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2π
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Therefore, the additional energy or level which is introduced by the external magnetic field only can take 

two values:  ±
1

2
(
eh

2πm
)B .  It is also a spatial quantization because the external magnetic field defines a 

direction for the magnetic dipole momentum of the spin and also two additional energy sub-levels.  If the 

external magnetic field is not applied, then the orientation or direction of the dipoles does not affect the 

energy levels [4]. 

In resume, the Anomalous Zeeman Effect and the spin of the electron can explain the additional spectral 

lines which sometimes appear at the Normal Zeeman Effect.  The external magnetic field introduces two 

additional energy sub-levels to the electron energy:  one sub-level due the interaction between the orbital 

magnetic dipole momentum and the magnetic field and the other sub-level between the magnetic dipole 

momentum of the spin and the magnetic field.  Besides, as the force that experiments the magnetic dipole 

momentum of the spin depends of the orientation between µs and B, if there are only two possible 

orientations of µs, then there are only two values of forces and thus, two deviation angles and two 

additional energy sub-levels.   

4.9. Atoms with more than one electron 

Firstly, it is possible to analyze an atom with two electrons.  There is an electrostatic interaction between 

the electron and the other electron in addition to the electrostatic interaction between the electron and the 

nucleus.  It is possible to consider as an approximation that the electron moves in a region where there are 

the electric field due the nucleus (attractive) and the average electric field due the other electrons 

(repulsive) [4], [5]. The approximation is because of the mathematic method to solve the Schröndiger 

Equation but the Schröndiger theory is still valid. 

By considering this approximation to the electron motion, it has four quantum numbers:  n, l, ml specifies 

the orbital motion of the electron (where orbital means a probabilistic region for the electron motion and 

no circular or elliptical orbit) and ms specifies the spin orientation. The electrons are in a probabilistic 

density distribution or region where there are zones for the most probable location of the electron.  Those 

distribution of probabilistic density  are called orbitals or electronic clouds. The orbital motion of the 

electron has energies which depends of the numbers n and l without the external magnetic field.  In 

presence of the external magnetic field, the orbital energy depends also of the quantum number ml and 

the total energy depends of ms in addition. 

All the electrons with the same quantum number n are approximately at the same distance to the nucleus.  

They are at the same orbital or density distribution. The main levels or orbitals are called as follows: 

n:  1(K), 2(L), 3(M), 4(N), 5(O), 6(P), 7(Q),…. 
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The probability to find the electron near the nucleus increases when l has a low value.  Besides, the 

energy of the electron decreases when it is more near the nucleus (more negative, less distance r) or l 

decreases.  Then, those electrons with less value of l have less energy for electrons with the same energy 

level n.  For example, electrons a with n=2 l=0 have less energy than electrons with n=2 l=1.  The orbital 

angular momentum is quantized with the quantum number l.  It gives an additional energy sub-level for 

the electron at the atom [4], [5].  The sub-levels l are called as follows: 

l:  0(s), 1(p), 2(d), 3(f), 4(g), 5(h), 6(i),….. 

The electrons are located in levels and sub-levels at the atom in accordance with the next rules: 

- The atoms by means of the electrons try to find an state where the total energy is minimum.  It 

corresponds an state of stability for the atom. 

- Two electrons of an atom in a sub-level must have as minimum one different quantum number.  It 

corresponds to the Exclusion Principle of Pauli. 

It is possible to apply those rules for the Hydrogen Atom with one electron.  The most probable state for 

the electron is where n=1, l=0, ml=0:  1s
1
.  The first number 1 corresponds to the quantum number n=1 or 

level K, the letter s corresponds to the sub-level l=o or s, and the second number 1 corresponds to the 

number of electrons at the sub-level s or l=0.  The angular momentum has the value L=0 because l=0 and 

L=l
ℎ

2𝜋
 .  We can do the same analysis for the Helium with two electrons.  Both electrons have the three 

first quantum numbers equals but the difference is that one electron takes the quantum number ms=1/2 

and the other ms=-1/2: 1s
2
 :  there are two electrons at the level n=1 or K, at the sub-level l=0 or s and 

ml=0 and one electron has ms=1/2 ↑ and the other ms=-1/2  ↓.   

For the sodium with eleven electrons, the configuration is as follows: 

First level K:  n=1 l=0 ml=0 ms=±1/2, it can be occupied by two electrons:  1s
2
. 

Second level L:  n=2 l=0,1 ml=0, ±1, ms=±1/2, the combinations among n, l and ml are:  n=2 l=0  ml=0, 

n=2 l=1  ml=0, n=2 l=1 ml=1, n=2 l=1 ml=-1. 

They can have two combinations more due ms=±1/2.  Then, there are 8 possible locations for the 

electrons at the level L. The formula for the number of possible locations for the electron is 2n
2
. For n=2, 

there are 8 possible locations at this level. For the sodium atom, there are two electrons at the level n=1 K, 

8 electrons at the level n=2 L, and 1 electron at the level n=3 M: ↑. The sodium configuration is as 

follows:  1s
2
, 2s

2
 2p

6
, 3s

1
. At the same way, it is possible to obtain the configurations for the periodic 

table [4], [5].  Nevertheless, there are some variations at the configurations of some elements.  These 

variations starts from the potassium K where the level N starts to fill when the level M is not completely 
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occupied at all the sub-levels.  The electrons support two fields:  the field of the nucleus and the field due 

to the other electrons.  The field due the other electrons is more intense when the atomic number is ≥19 

(n=19:  K potassium).  Therefore, the approximation or model proposed before for the configuration is no 

so good and it is necessary to do some corrections.  Then, it results than the level 4s is of less energy than 

the level 3d at the Potassium element [4]. 

The configuration of the electrons is very important for Chemistry where there are relations between the 

electrons of the external levels and the chemical properties of the elements.  Therefore, it has been 

formed some groups of the elements of the periodic table in accordance with the similar properties 

among the elements.  The elements of the group 1 have one electron at the most external sub-level.  Then, 

they are chemically very active.  For other hand, the elements of the group VIII have all the level and 

sub-levels occupied totally.  Then, they don´t participate in chemical reactions and they are not 

chemically active.  In resume, the physical and chemical properties of the elements depends of the 

electronic configurations of the atoms at the base or stationary state and the excited stated [4], [5]. 

5. Diffraction: Heisenberg’s Uncertainty Principle 

The Heisenberg uncertainty principle states the following:  It is impossible to know simultaneously and 

exactly the position and moment of a particle.  It is expressed with the next formula: ∆p∆x≥
(
h

2π
)

2
  where 

p is the momentum, x is the position of the particle and h is the Planck constant [4], [5], [9].  A variant of 

this principle is as follows:  It is impossible to know simultaneously and exactly the energy of a particle 

and the time in which it has that energy: 

∆𝐸∆𝑡≥
(
ℎ

2𝜋
)

2
 where E is the energy and t is the time where this energy is measured.  It is demonstrated as 

follows: 

E=
p2

2m 
      ∆E=

2p

2m
∆p         ∆E=v∆p     

∆x=v∆t     ∆t=
∆x

v
   

∆E∆t=v∆p
∆x

v
=∆p∆x>

(
h

2π
)

2
       ∆E∆t≥

(
h

2π
)

2
  

This principle is also a support for the modern quantum mechanics and for the Schrödinger’s Quantum 

Theory [4], [5], which is considered as a probabilistic theory.  This inability to determine velocity and 

position exactly and at the same time is not due to an experimental error of the variables or a limitation of 

the experimental instruments. This impossibility of determination at the same time of these physical 

variables (velocity and position or energy and time) with all precision is due to an intrinsic property of all 
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quantum system or of the wave nature of the system due the wave behavior of the electron. In fact, it is 

possible to obtain the uncertainty principle from the wave properties. Therefore, the quantum nature or 

wave electron behavior prevents us from determining both variables exactly and at the same time [4], [5], 

[9].  This is not observed in macroscopic experiments because the quantum scale (microscopic scale) 

does not take effect and then, it is not observable. Thus, it appears that on a large scale the variables can 

be accurately determined as the physical instruments allow it. 

An imaginary experiment was idealized by Bohr for the Uncertainty Principle. It is possible to measure 

the position of an electron by means of a microscope. The electron must be illuminated to be observed, 

since what is observed is not the electron but the scattered photons [9].  At this imaginary experiment, the 

uncertainty principle appears without doing any calculation or measurement, since the mere fact of 

observing the electron disturbs it. When the electron is lit, it is bounced by the Compton effect which 

cannot be determined in detail.  But, this is necessary to illuminate the electron to detect it. Thus, the 

uncertainty principle is inherent in the nature of the quantum processes. There is always an indeterminate 

interaction between the observer and the observed. The uncertainty principle is a proof of the 

probabilistic nature of quantum physics [9]. Nevertheless, the electron disturbance can be reduced by 

using a very weak source. For example, the electron can be illuminated by a single photon entering the 

microscope lens.  The magnitude of the momentum is p=h/λ.  The photon could have been scattered in 

any direction, within the angle range of 2θ. Thus, the results of the interaction cannot be predicted [9]. 

The x component of the momentum of the photon can vary from +psenθ to -psenθ: 

Δpx≈2psenθ=2
ℎ

𝜆
senθ 

Due to the law of momentum conservation, the electron must receive a momentum in the x direction 

equal to the change in momentum x of the photon. Then, the momentum of the electron has the same 

uncertainty of the photon: Δpx≈2
h

λ
senθ.   

It is necessary to use a light with a lower energy, (lower frequency or larger wavelength) or a microscope 

with a smaller angle θ of measurement (larger D)  (which is given by the resolution power of the 

microscope) to reduce this amount of momentum [9].  The resolution power of the microscope 

determines the highest precision with which the electron can be located.  It is given by the next formula: 

senθ=1.28
λ

D
             senθ≈

λ

D
     D≈

λ

senθ
   

where D is the linear separation of the points of the object that are solvable in the image:   D=Δx       

Δx=
λ

senθ
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Fig.23. Experiment imagined by Bohr for the Uncertainty Principle 

The photon is scattered somewhere within the resolvable limits of the microscope. This also corresponds 

to the uncertainty in the location of the electron Δx=D.  If we want to reduce the localization range Δx, a 

light with a higher energy, higher frequency or smaller wavelength or a microscope with a higher 

resolution angle θ should be used (smaller D) [9].  These conditions are contrary to those of momentum.  

It is a reason that the uncertainty principle appears without doing any calculation or measurement.  The 

formula is as follows:   ΔpxΔx=2
h

λ
senθ 

λ

senθ 
    ΔpxΔx=2h>

(
ℎ

2𝜋
)

2
   

By doing an analysis of the quadratic half values of the respective uncertainties of the position and 

momentum, it is possible to get the exact formula of the Uncertainty Principle:  ΔpxΔx>
(
ℎ

2𝜋
)

2
    Uncertainty 

Principle of Heissenberg. 

Another variant of the experiment is as follows: we want to locate an electron in the vertical position by 

making it pass through a narrow slit. 

 

 

Fig.24. Electron diffraction by a slit for the Uncertainty Principle 

The figure shows the diffraction spectrum formed on a screen by a beam of monoenergetic electrons 

passing through a single slit. Due to the particle wave duality, it can be considered as the passage of a flat 

monochromatic wave with a given wavelength (guide wave or pilot wave) through the slit [5], [9]. 
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Optically, it is known that the first diffraction minimum corresponds to the following formula:  
a

2
senθ=

m
λ

2
  . It is possible to observe at the figure that there is a minimum, if the path difference between the rays 

that leaves from the superior extreme and from the center is an integer number of the half of the 

wavelength. The first minimum is obtained when m=1: asenθ=λ  where a is the slit width: a=Δx     

senθ=λ/Δx . 

The diffraction spectrum gives the statistical distribution on the screen of a large number of incident 

electrons from the particle point of view [5], [9].  If  a>>λ there is no the diffraction pattern.  The 

diffraction pattern appears when a≤ λ.  If we want to reduce the uncertainty of the y position, it is 

necessary to reduce the width of the slit (smaller width of the slit) but it increase the diffraction of the 

electrons and the uncertainty in the momentum. Thus, if we want to reduce the uncertainty in the 

momentum, it is necessary to increase the the width of the slit.  Then, these conditions are contrary to 

those of the position.  The uncertainty principle appears again without doing any calculation or 

measurement. The uncertainty in the vertical coordinate of the electron is of the order of the width of the 

slot:  Δx≈a. The uncertainty in the amount of vertical momentum of the electron Δpx is given by Δpx=2px  

(maximum uncertainty of the x component of the momentum: from -px to +px):  senθ ≈θ=
𝑝𝑥

𝑝
        px=psenθ     

p=h/λ     px=
h

λ
senθ 

Δpx=2px      Δpx=2
ℎ

𝜆
senθ 

ΔpxΔx=2
ℎ

𝜆
senθΔx         a=Δx        senθ=λ/Δx (first minimum) 

ΔpxΔx=2
ℎ

𝜆

𝜆

𝛥𝑥
Δx     Δpx Δx=2h>

(
𝒉

𝟐𝝅
)

𝟐
 

ΔpxΔx>
(
ℎ

2𝜋
)

2
    Uncertainty Principle of Heissenberg 

Besides, if the arrival of the electrons are detected with a detector after the slit and before the screen, the 

behavior of the spectrum at the screen appears as a particle.  It is known as the wave collapse.  If the total 

distribution of the electrons is observed on the screen without the detector after the slit, the behavior of 

the spectrum appears as a wave.  It is possible to analyze it with two slits and the result is known as the 

Copenhagen Interpretation. The probability of an electron hitting some point on the screen is given by the 

Schröndiger wave function squared [5], [9]. In resume, if we want to reduce the amount of momentum, 

this increases the uncertainty in the location.  On the contrary, if we want to reduce the uncertainty in the 

location, this increases the uncertainty in the momentum.  This imprecision does not depend on the 
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instruments that are used to measure or the uncertainties of the instruments.  This is an inherent property 

of the quantum nature of physical processes or the wave property of the electron [9]. 

5.1. Diffraction:  Fourier Approach 

The constant energy radiation for the case of light before the slit is represented by the next function: 

f(x,t)=Fo     -xo/2≤x≤ xo/2 

f(x,t)=0     x> xo/2  or x< - xo/2 

 

Fig.25. Constant energy radiation for the light 

The Fourier integral at the domain of the angular frequency w is given by the next function:  F(w)=

F[f(x,t)]=∫ f(x,t)e−jwtdt
∞

−∞
  

Sometimes, it is considered the Fourier integral function as follows: 

F(w)=F[f(x,t)]=
1

√2𝜋
∫ f(x,t)e−jwtdt
∞

−∞
  

At this Fourier analysis, it is considered the first function: 

F(w)=∫ Fo
xo/2

−xo/2
e−jwtdt  

F(w)=
Fo

−jw
(−2jsen

wxo

2
)       e−jwt=cos (wt)−jsen(wt)  

F(w)=
2Fo

w
sen(

wxo

2
)=Foxo

sen(
wxo
2
)

w
xo
2

  

The magnitude of the spectrum |F(ω)|  para xo=2 and Fo=7 is showed in the next figure: 

 

Fig.26. Spectrum |F(ω)|  for the constant radiation for the light 
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The no constant energy radiation for the case of light or an electromagnetic wave for the case of a beam 

of electrons before the slit is represented by the next function: 

f(x,t)=Fo+Focos(wot)     -xo/2≤x≤ xo/2          xo≤λo (to produce diffraction) 

f(x,t)=0                           x> xo/2  or   x< - xo/2 

For Fo=7 and wo=1, the graph of f(x,t) is as follows: 

 

Fig.27. No constant energy radiation for a beam of electrons 

The Fourier integral at the domain of the angular frequency w is given by the next function: 

If F(ω)=F[f(t)]  the Fourier integral of f(t)cos ωot is as follows: 

 

F[f(t)ejωot]=Ϝ(𝜔−𝜔𝑜)       cos(ωot)=
1

2
[ejωot+e−jωot]  

 

F[f(t)cos(ωot)]=F[f(t)
1

2
[ejωot+e−jωot]]=

1

2
F[f(t)ejωot]+

1

2
F[f(t)e−jωot]  

=
1

2
Ϝ(𝜔−𝜔𝑜)+

1

2
Ϝ(𝜔+𝜔𝑜) 

f(x,t)=Fo     -xo/2≤x≤ xo/2 

f(x,t)=0       x> xo/2  or x< - xo/2 

F(w)=
2Fo

w
sen(

wxo

2
)       xo≤λo 

1

2
Ϝ(ω−ωo)+

1

2
Ϝ(ω+ωo)=

Fosen(
xo
2
(w−wo)

w−wo
+
Fosen(

xo
2
(w+wo)

w+wo
   

f(x,t)=Fo+Focos(wot)     -xo/2≤x≤ xo/2       xo≤λo  (to produce diffraction) 

f(x,t)=0                           x> xo/2  or x< - xo/2      

F(w)=
2Fo

w
sen

wxo

2
+
Fosen(

xo
2
(w−wo)

w−wo
+
Fosen(

xo
2
(w+wo)

w+wo
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F(w)=Foxo
sen(

wxo
2
)

w
xo
2

+
Fo
xo
2
sen(

xo
2
(w−wo)

xo
2
(w−wo)

+
Fo
xo
2
sen(

xo
2
(w+wo)

xo
2
(w+wo)

  

The magnitude of the spectrum |𝐹(𝜔)|  para xo=2, wo=0.1 and Fo=7 is showed in the next figure: 

 

Fig.28. Spectrum |F(ω)| for a beam of electrons 

Therefore, the Fourier Integral represents the intensity of the radiation on the detector screen with angular 

frequency w w=2πk or wave number k=1/λ.  The slit represents a Fourier Integral which gives out the 

intensity of the radiation.  Then, the Fourier Integral of the slit has explained by means of mathematics 

the Diffraction pattern for the light or for a beam of electrons.  Besides, this pattern is explained 

independently if the incident radiation is considered a beam of wave or particles (light beam or electron 

beam) [14].   It can explain also the interference pattern for the case of two slits.  Because with one slit, 

the representation of this slit as Fourier Integral works and describes the pattern on the screen, then it 

must work also for the case of two slits and describes the behavior on the screen for the case of 

interference [14]. 

5.2. Uncertainty Principle of Heisenberg by applying Wave Property 

In quantum mechanics, the variables E (energy) and t (time) are related and reciprocal quantities which is 

given by the Uncertainty Principle.   Besides, p (momentum) and x or r (position) are also related 

quantities by the same principle.  Besides, the energy is related to the angular frequency w=2πf (f: 

frequency) or w=2π/T (T: period) by the formula:  E=
h

2π
w   E=

h

2π
2πf   E=hf. 

Therefore, other related quantity is the angular frequency w and the time t.   

The momentum p is given by the formula:  p=h/λ and the wave number k is given by the formula k=2π/λ.  

Then, it is possible to obtain the formula: 

λ=2π/k and p=
h

2π
k.  Then, other related quantity is the wave number k and the position x or r. 

It is possible to analyze the Gaussian Function which appears in many subjects in Physics as in Quantum 

Mechanics at the harmonic oscillator, Optics,  Electronics and for the imagen processing by using filters.  
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As it has mentioned before, the slit at the diffraction of a beam of electrons or  the light represents a 

Fourier Integral which gives out the intensity of the radiation.  Thus, it is possible to obtain the 

Heisenberg Uncertainty by applying Fourier Integral to the Gaussian Function.  In fact, it is possible to 

obtain the Heisenberg Uncertainty by applying the Fourier Integral independent of the function which is 

used. The Gaussian Distribution is defined as follows:  f(t)=
1

σ√2π
e
−
t2

2σ2  

It is a function centered in t=0 and with rms deviation of Δtrms=σ. It is possible to calculate the inflexion 

points as follows: 

f(t)=
1

σ√2π
e
−
t2

2σ2                                   
df

dt
=

−t

σ3√2π
e
−
t2

2σ2   

d2f

dt2
=

t2

σ5√2π
e
−
t2

2σ2−
1

σ3√2π
e
−
t2

2σ2          
t2

σ5√2π
e
−
t2

2σ2−
1

σ3√2π
e
−
t2

2σ2=0  

𝑡2=𝜎2             t=±σ  

Δtrms=σ      For σ=2   Δtrms=2 

 

Fig.29. Graph of the Gaussian Distribution for σ=2 

In t=±2, f´´(t)=0, then the rms deviation is Δtrms=2 which corresponds to the values of t where there are 

inflexion points. The Fourier Integral of the Gaussian function is obtained as follows: 

F(w)=F[f(x,t)]=
1

√2𝜋
∫ f(x,t)e−jwtdt
∞

−∞
  

F(w)=
1

√2𝜋
∫

1

𝜎√2𝜋
𝑒
−
𝑡2

2𝜎2e−jwtdt
∞

−∞
  

F(w)=
1

√2𝜋
∫

1

𝜎√2𝜋
𝑒
−
(𝑡2+2𝑗𝜎2𝑤𝑡)

2𝜎2 dt
∞

−∞
  

𝑡2+2𝑗𝜎2𝑤𝑡=𝑡2+2𝑗𝜎2𝑤𝑡+(𝜎2𝑗𝑤)2−(𝜎2𝑗𝑤)2  

𝑡2+2𝑗𝜎2𝑤𝑡=(𝑡+𝑗𝜎2𝑤)2−(𝜎2𝑗𝑤)2  

F(w)=
𝑒
−
𝜎2𝑤2

2

√2𝜋
∫

1

𝜎√2𝜋
𝑒
−
(𝑡+𝑗𝜎2𝑤)2

2𝜎2 dt
∞

−∞
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x=
(t+jσ2w)2

2σ2
        dt=√2𝜎𝑑𝑥  

F(w)=
𝑒
−
𝜎2𝑤2

2

√2𝜋
∫

1

𝜎√2𝜋
𝑒−𝑥

2∞

−∞
√2𝜎𝑑𝑥  

F(w)=
𝑒
−
𝜎2𝑤2

2

√2𝜋
∫

1

√𝜋
𝑒−𝑥

2∞

−∞
𝑑𝑥  

∫
1

√𝜋
𝑒−𝑥

2∞

−∞
𝑑𝑥=1  

F(w)=
𝑒
−
𝜎2𝑤2

2

√2𝜋
  

This function is also Gaussian centered in w=0 and with rms deviation of Δwrms=1/σ. It is possible to 

calculate the inflexion points as follows: 

𝐹(𝑤)=
𝑒
−
𝜎2𝑤2

2

√2𝜋
              

dF

dw
=−

σ2we
−
σ2w2

2

√2π
  

d2F

dw2
=
σ4w2e

−
σ2w2

2

√2π
−
σ2e

−
σ2w2

2

√2π
            

σ4w2e
−
σ2w2

2

√2π
−
σ2e

−
σ2w2

2

√2π
=0  

𝜎4𝑤2=𝜎2  

𝑤2=
1

𝜎2
               w=±

1

σ
  

Δwrms=
1

𝜎
   For σ=2   Δwrms=1/2 

 

Fig.30. Graph of the Fourier Integral of the Gaussian Distribution for σ=2 

In w=±0.5, F´´(w)=0, then the rms deviation  Δwrms=0.5 which corresponds to the values of w where 

there are inflexion points. Therefore, it is obtained for the related quantities:  ΔwΔt=
1

σ
σ=1   for a 

gaussian distribution. For the Gaussian function, this product is one independent of the value of σ. 

In Physic terms, it means that if the time is increased or stretched (more Δt), then it implies a decrease or 

narrowed (less Δw) at the frequency spectrum (more waves).  It is possible to appreciate this inverse 
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relation between time and frequency in Electronics by using an oscilloscope. For the other related 

quantities, it is obtained the same relation:  ΔkΔx=1  : gaussian distribution. 

If the position is increased or stretched  (more Δx), then it implies a decrease or narrowed (less Δk) at the 

wave-number spectrum (more waves). Those relations are applied in quantum mechanics by introducing 

the formula for momentum and energy given by De Broglie and Einstein: 

E=hf    w=2πf    f=w/(2π)    E=
h

2π
w     

p=h/λ   k=2π/λ    λ=2π/k      p=
h

2π
k 

The formula are as follows: 

ΔwΔt=1      E=
h

2π
w     

h

2π
ΔwΔt=

h

2π
          ΔEΔt=

ℎ

2𝜋
 

ΔkΔx=1      p=
ℎ

2𝜋
k        

h

2π
ΔkΔx=

h

2π
          ΔpΔx=

ℎ

2𝜋
 

Nevertheless, f(t) represents a wave function with no physical interpretation. The wave function squared 

is the quantity that has direct physical significance and it is the one that is related to the experimental 

results. The squared function |𝑓(𝑡)|2 is known as the probability amplitude which is also a Gaussian 

function.  The probability amplitude in the frequency is |𝑓(𝑤)|2 which is also Gaussian function.  The 

rms deviation of |𝑓(𝑡)|2 is 
𝜎

√2
 and the rms deviation of |𝑓(𝑤)|2 is 

1

𝜎√2
.   

f(t)=
1

σ√2π
e
−
t2

2σ2        |𝑓(𝑡)|2=𝑔(𝑡)=
1

𝜎22𝜋
𝑒
−
𝑡2

𝜎2  

𝑑𝑔

𝑑𝑡
=
−2𝑡

𝜎42𝜋
𝑒
−
𝑡2

𝜎2           
𝑑2𝑔

𝑑𝑡2
=
4𝑡2

𝜎62𝜋
𝑒
−
𝑡2

𝜎2−
2

𝜎42𝜋
𝑒
−
𝑡2

𝜎2  

𝑡2=
𝜎2

2
                       𝑡=±

𝜎

√2
           Δtrms=

𝜎

√2
   

By doing the same procedure, it is possible to obtain Δwrms=
1

𝜎√2
 for |𝑓(𝑤)|2. 

F(w)=
𝑒
−
𝜎2𝑤2

2

√2𝜋
               |𝐹(𝑤)|2=ℎ(𝑤)=

1

2𝜋
𝑒−𝜎

2𝑤2  

𝑑ℎ

𝑑𝑤
=−

2𝜎2𝑤𝑒−𝜎
2𝑤2

2𝜋
        

𝑑2𝐹

𝑑𝑤2
=
4𝜎4𝑤2𝑒−𝜎

2𝑤2

2𝜋
−
2𝜎2𝑒−𝜎

2𝑤2

2𝜋
  

4𝜎4𝑤2𝑒−𝜎
2𝑤2

2𝜋
−
2𝜎2𝑒−𝜎

2𝑤2

2𝜋
=0  

4𝜎4𝑤2=2𝜎2      𝑤2=
1

2𝜎2
  



 

   

Mediterranean Journal of Basic and Applied Sciences (MJBAS) 

Volume 4, Issue 4, Pages 18-113, October-December 2020 

ISSN: 2581-5059                                                www.mjbas.com 

86 

𝑤=±
1

√2𝜎
            Δwrms=

1

𝜎√2
 

Therefore, the formula of the Uncertainty Principle is as follows: 

ΔwΔt=
1

𝜎√2

𝜎

√2
=
1

2
    

ΔkΔx=
1

𝜎√2

𝜎

√2
=
1

2
  

ΔwΔt=
1

2
      E=

ℎ

2𝜋
𝑤     

ℎ

2𝜋
ΔwΔt=

ℎ

2𝜋

2
          ΔEΔt=

ℎ

2𝜋

2
 

ΔkΔx=
1

2
      p=

ℎ

2𝜋
k        

ℎ

2𝜋
ΔkΔx=

ℎ

2𝜋

2
          ΔpΔx=

ℎ

2𝜋

2
 

The factor 1/2 appears because it is using Gaussian distribution for the wave function f(t).  Nevertheless, 

it is obtained a factor of:  c
ℎ

2𝜋
 for the product of ΔEΔt or ΔpΔx independent of which function is used.   

ΔEΔt= c
ℎ

2𝜋
  or   ΔpΔx= c

ℎ

2𝜋
   for any function where c is a constant 

The factor 1/2 due the Gaussian function is the minimum possible for the factor ΔEΔt or ΔpΔx:   c≥1/2.  

The Gaussian Distribution is called the minimum packet of dispersion.  Therefore, the Uncertainty 

Principle of Heisenberg is as follows: 

ΔEΔt≥

ℎ

2𝜋

2
       ΔpΔx≥ 

ℎ

2𝜋

2
 

6. Interference:  Double Slit Experiment 

A beam of electrons is fired at two parallel slits.  They are detected on a screen which is the detector of 

the interference pattern.  The electron beam will create a pattern of light and dark bands if there is no 

other detector after the slit and before the screen.  This pattern behavior is similar to the waves pattern 

which is a proof of the duality wave-particle of De Broglie.  It is also a proof of the standing waves for the 

electron to explain the stationary states at the atom by applying the De Broglie Approach [9].   

 

Fig.31. Double Slit Experiment with the intensity pattern on the screen detector 
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But, if an observer put a detector after the slit and before the screen to know which slit each electron 

passes, only two bright spots will appear and the interference pattern disappears.  It is as if the electrons 

were bullets fired through one slit or the other.  This pattern behavior is equal to the particle behaviour.  It 

is known as the collapse of the wave pattern (wave collapse) and one explanation was the Copenhagen 

Interpretation. 

If φA and φB (wave functions for each slit) are different wave function for the electron.  They are solutions 

of the Schröndiger Equation.  Besides, they represent a possible state for the electron [5].  Then, the 

superposition of the two waves is also solution of the Schröndiger equation:  φ=c1 φA+c2φB  where c1 and 

c2 are constants. The electrons at the two slits experiment have the same probability to pass in each slit.  

The interference pattern observed for the electron is the same as the light interference.  It is possible to 

understand by applying the wave-particle duality of De Broglie. If it is not located a detector before the 

screen and after the slit, it is not possible to know which slit the electron has passed. The electron is in a 

superposition of states given by the next function:  φ=
1

√2
(φA+φB).  The coefficient 

1

√2
 is due that the 

electron has the same probability to pass in the slit A or B.  It is possible to obtain this number by the 

condition that the probability of that the electron in some region of the element volume is the unity: 

∫|φ|2dV=1  Because φ is a probabilistic wave function 

The distribution of the electrons at the screen is given as follows: 

⌈𝜑⌉2=𝜑∗𝜑∗=
1

√2
(𝜑𝐴+𝜑𝐵)

1

√2
(𝜑𝐴

∗+𝜑𝐵
∗)  

                           =
1

2
(|𝜑𝐴|

2+|𝜑𝐵|
2+𝜑𝐴𝜑𝐵

∗+𝜑𝐴
∗𝜑𝐵)  

Therefore, the term φAφB
∗+φA

∗φB contributes to the respective pattern on the screen and makes the 

difference with the particle pattern on the screen which does not include this term.  This pattern is similar 

to the light interference pattern.  It is in agreement with the consideration for the electron as wave.  It is 

obtained the same pattern independent if millions of electrons arrive by second, or only one electron by 

hour.  Of course, it is needed many electrons to obtain the interference pattern as the light interference 

[5].  It is similar to the throwing  of a coin where it is necessary to do many throwing of the coin to prove 

the probability of 1/2 for each side of the coin. This uncertainty principle also is a support for the 

probabilistic model of the Schröndiger Approach.   Besides, this probabilistic behaviour is used at the 

Schröndiger Theory which is a Probabilistic Theory for the electron at the atom.  

For the light case, the interference is product of the interference of the two light waves when they pass 

through the slits.  For the electron case, it is possible to consider the electron as wave and therefore, it is 

obtained the same result as the light because of the interference of two electron waves from the two slits.  
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As we mentioned before, it is necessary many electrons to observe the pattern because of the probabilistic 

behavior.  One electron only produces a point at the screen and with few electrons the pattern is not good 

observable.  The electrons during the wave interference are located in different positions at the total wave 

φ=c1 φA+c2φB but that we observe on the screen is the total interference wave φ.  The wave serves to the 

electron as guide during the interference process. The electrons from the wave φA or φB after the slits are 

positioned in a new guide wave φ whose pattern is observed at the screen.  The explanation for the 

interference pattern was explained with two proposed:  The Copenhagen Interpretation and the Pilot 

Wave Interpretation. 

6.1. The Copenhagen Interpretation 

The modern quantum mechanics has established that the electrons do not have definite positions.  The 

electrons spread out like a wave with no definite position which is a probabilistic solution of the 

Schröndiger Equation [4], [5].  Thus, it is necessary to consider probabilistic approach to calculate the 

probabilistic position of the electron.   At the double slit experiment, the electron passes through both slits 

simultaneously, and interferes with itself to form the bright and dark bands on the screen [5].  If the 

observer put a detector before the screen to know which slit each electron passes, only two bright spots 

will appear and the interference pattern disappears. The observation by using the detector collapses 

instantaneously the wave interference pattern. 

6.2. Pilot Wave Interpretation and why the electron doesn´t radiate energy as a particle 

This interpretation was proposed by Bohmian.  It is a new interpretation of quantum mechanics. At this 

interpretation, the electrons are guided by a pilot wave like a surfer on a wave.  Every electron always has 

a definite position like the surfer because the electron is a particle guided by a wave.  It doesn’t matter if 

the observer knows the position or not.  An electron is pushed or guided by a guiding pilot wave which 

influences the electron´s location. The interference spectrum gives the statistical distribution on the 

screen of a large number of incident electrons from the particle point of view. From the wave point of 

view, the interference of the pilot waves gives out the interference pattern. The wave serves to the 

electron as guide during the interference process. Each electron travels through one slit or the other, but 

the pilot wave passes through both slits simultaneously. The electrons from the wave φA or φB after the 

slits are positioned in a new guide wave φ whose pattern is observed at the screen.   A measurement or 

observation at the slits will collapse the pilot wave and detect the electron position at this point.   

The electron doesn´t radiate energy as a particle because the electron in an atom no excited is at rest. 

Thus, it cannot radiate energy because it corresponds to a stationary level of the atom.  Besides, the 

electron is guided by a pilot wave and it is a rest within the wave.  It is similar for an astronaut inside of a 
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rocket which is moving with a constant velocity v.  Then, the astronaut is at rest within the rocket.  In 

similar form, the electron is at rest within the wave and therefore, the electron does not radiate energy.  

7. Heisenberg Approach: Matrix Approach 

Heisenberg proposed a matrix mechanic. This is a theory that makes application of observable quantities. 

By means of Bohr's correspondence principle, the stationary states of the atom were obtained.  

Heisenberg applied Fourier analysis and Hamiltonian Concept to the quantum world.  Balmer's formula 

depended on two index n and n´. He postulated that there should be as many indices as stationary states. 

Heisenberg affirmed that all classical physical magnitude must be transformed into a matrix Anm. The 

position of the electron x must be replaced by a matrix Xnm [4], [5], [8].  The matrix development for the 

position of the electron is:  𝑥𝑛𝑚
2=∑ 𝑥𝑛𝑘𝑥𝑘𝑚𝑘  . The Dynamics that govern quantum quantities is as 

follows: 

dX

dt
=
i
h

2π

(HX−XH)=
i
h

2π

[H,X] where H is the hamiltonian matrix or the energy. 

[H,H]=0 which represents the conservation of energy. 

Through the application of the Hamiltonian and the matrix application, Heisenberg was able to obtain the 

energy conservation. The Heisenberg matrix mechanics was developed by Heisenberg, Born and Jordan.  

It explained very well the observations and experimental results [4], [5], [8].  In addition, Heisenberg 

discovered a principle known as the Uncertainty Principle: the impossibility of knowing at the same time 

and with all precision the position and velocity (or momentum) of an electron or the energy and the 

instant at which it is measured [4], [5], [8], [9]:  ΔEΔt≥

ℎ

2𝜋

2
       ΔpΔx≥ 

ℎ

2𝜋

2
.  

The electron is never found between the stationary states in the Heisenberg model. The electron does not 

have this property. Thus, in the game of chess, the only interest is the initial position of a pawn and its 

final position and it does not matter how the pawn's trajectory was. It is the same as in Heisenberg’s 

matrix theory. In the matrix theory developed by Heisenberg: the motion of the electron within the atom 

is not the translation of the electron ball in some path around the nucleus. The movement of the electron 

within the atom is the change of the state of the system in the time that is described by means of the 

matrix where it is only matter the initial position and the final position. The problem of the stability of the 

atom was solved because in an unexcited atom, the electron is at rest and therefore should not radiate.  

This corresponds to a state at rest and to a stationary matrix solution. The atom in this matrix model was 

presented as an infinite chess board where in each square was written the numbers of the matrices Xnk (n: 

abscissa and k: ordered). These numbers were the coordinates of the electron in the atom [4], [5], [8]. 
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This matrix development was not widely accepted by scientists of that time. Schrodinger's wave 

mechanics received more acceptance among physicists. 

8. Schrödinger Quantum Theory 

The modern quantum physics describes the behavior of atoms and matter in the microscopic system 

without mixing the classical and quantum concept. This quantum development was carried out by 

Schröndiger, Heisenberg, Born, De Broglie and Dirac. This explained almost all the experimental 

evidences at the atom [4], [5]. 

The ideas established before the modern quantum physics are still valid as for example:  the quantization 

of the energy and the Planck constant, the quantization of the angular momentum, wave properties of the 

matter, particle properties of the radiation, wave-particle duality, Heisenberg Uncertainty Principle and 

the Probabilistic Interpretation for one slit and two slits for the diffraction and interference, [9].  The 

fundamental principles of modern quantum mechanics are:  Heisenberg’s uncertainty principle and de 

Broglie's wave-particle duality behavior of matter.  De Broglie wave-particle duality was used by 

Schröndiger to create his quantum theory by means of the wave equation and the wave function 

associated with the particle [4], [5].   

In 1926, Schröndiger used the investigation of De Broglie applied with the   Hamiltonian Approach and 

obtained an equation (wave equation) in which electrons are represented by means of waves [4], [5]. This 

was the beginning of modern quantum mechanics [4], [5].  The Schröndiger wave equation applied at the 

atom at the microscopic scale is analogous to Newton's second law:  F = ma   F=m
𝑑𝑣

𝑑𝑡
    applied at the 

macroscopic scale.  By solving Newton's second law, all the characteristics of the particle, trajectory and 

velocity are obtained in a deterministic behaviour. Likewise, when the Schröndiger equation is solved, 

the wave function associated with the electron or object of study is obtained. Furthermore, the wave 

function contains information about the energy of the particle and its momentum. But, momentum and 

energy cannot be interpreted classically. These quantities have a probabilistic interpretation and no 

deterministic. In this way, all the dynamic quantities obtained from the electron have a probabilistic 

interpretation at the Schrödinger Theory.  Those Dynamic quantities are obtained by solving the 

Schröndiger Equation by using the squared wave function.   

Therefore, the motion of the electron at the atom can be described by the electron wave (probabilistic 

wave) which satisfies the Schröndiger Equation at the stationary energy levels.  As it was mentioned 

before, the information of this wave function is probabilistic with no physical interpretation and no 

deterministic as the solution of the Newton equation.  The wave function acts as an intermediary between 

the wave equation and its squared function which has physical significance and it is the one that is related 
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to the experimental results [4], [5].  The squared function is known as the probability amplitude. The 

wave function squared gives us the probability of finding the electron within a given volume with a given 

quantized energy.  The electron is located in a probabilistic region called orbital [4], [5]. Thus, the square 

of the wave function evaluated at a given point in space and at a defined time, gives us the probability of 

finding the particle at that point and at that specific instant [4], [5].  

Also, the modern quantum physics could explain the postulates of Bohr and obtain the quantization 

formula for the energy and angular momentum at the stationary levels by applying the Schröndiger (wave 

probabilistic theory) and Heisenberg Theory (matrix theory) [4], [5].  The stationary states or levels 

correspond to those functions which satisfy the Schröndiger Equation [4], [5].   

It is similar to the conditions of normal modes for a wave as at the harmonic oscillator. The electron in an 

atom no excited is at rest.  Thus, it cannot radiate energy because it corresponds to a stationary level of 

the atom [4], [5].  The quantum numbers n (main number), l (orbital number), ml (magnetic number) and 

ms (spin number) are obtained directly from the Schröndiger Equation. It is not necessary to apply some 

postulates as the Bohr Theory [4], [5]. The Schröndiger theory is stronger than the Bohr theory in the 

sense that it is no necessary to use postulated ad hoc or patches to explain the results.  Also, the 

Schröndiger Theory doesn´t use classic concepts.  The Schröndiger Equation is not possible to derive 

mathematically.  It was an imposed postulate as the Second Newton Formula. 

The Schröndiger Equation dependent of the time is as follows: 

−
(
h

2π
)
2

2m

∂2

∂x2
φ+V(x)φ=i

h

2π

∂φ

∂t
    1D 

−
(
h

2π
)
2

2m
(
∂2

∂x2
φ+

∂2

∂y2
φ+

∂2

∂z2
φ)+V(x)φ=i

h

2π

∂φ

∂t
    3D 

The Schröndiger Equation independent of the time is as follows: 

−
(
h

2π
)
2

2m

∂2

∂x2
φ+V(x)φ=Eφ    1D 

−
(
h

2π
)
2

2m
(
∂2

∂x2
φ+

∂2

∂y2
φ+

∂2

∂z2
φ)+V(x)φ=Eφ    3D 

∫|φ|2dV=1  because φ is a probabilistic wave function 

For a free particle, the potential has the value of 0, V=0.   

The solution of the Schröndiger equation for a free electron (V=0) with motion between -L/2 and L/2, 

and with even parity symmetry is: 
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φ(x,t)=Acos(kx+ωt)          k=2π/λ 

−
(
h

2π
)
2

2m

∂2

∂x2
φ+V(x)φ=Eφ    V=0 

−
(
h

2π
)
2

2m
(−Ak2)=EA        E=

(
h

2π
)
2

2m
k2    k=2π/λ 

E=
h2

2mλ2
          V=0     E=K      K=

1

2
mv2     K=

p2

2m
 

 
h2

2mλ2
=
p2

2m
        p=

h

λ
  

It is the formula of De Broglie for the wave-particle duality.  It is a strong proof for the validity of the 

Schröndiger Equation. 

For t=0, the function must be zero in x=±L/2  and  x>L/2   φ=0     x<-L/2  φ=0 

cos (kL/2)=0   kL/2=(2n-1)π/2    kL=(2n-1)π    n=1,2,3,…. 

For n=0, it is the trivial solution φ=0. The solution for the energy is as follows: 

E=
(
h

2π
)
2

2m
k2   E=

(
h

2π
)
2

2m
(
2π

L
)2(n−

1

2
)2     n=1,2,3,…… 

If we consider the free electron(V=0) with motion between -L/2 and L/2, other possible solution is 

φ=Asen(kx+ ωt) which has odd parity symmetry[5]. 

E=
(
h

2π
)
2

2m
k2     E=

h2

2mλ2
       x>L/2   φ=0     x<-L/2  φ=0 

For t=0, the function must be zero in x=±L/2 

sin(kL/2)=0   kL/2=nπ    n=1,2,3,…. 

For n=0, it is the trivial solution φ=0. The solution for the energy is as follows: 

E=
(
h

2π
)
2

2m
k2             E=

(
h

2π
)
2

2m
(
2π

L
)2n2    

In resumen, it is obtained discrete values of energy for the free electron located  between -L/2<x<L/2.  

The electron can not be in any of these states of energy.  The general solution is a superposition of energy 

states [5]:  φ=∑CEφE  

Where, CE is the probability to find the electron in the energy state E [5].   

The energies of the electrons will be distributed with the probabilistic amount CE
2
. 
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Hydrogen Atom 

The results from the Schröndiger Equation for the Hydrogen Atom are in concordance with the evidences 

and experimental results as the Normal Zeeman Effect, Anomale Zeeman Effect, Spectrum of Fine 

Structure for example [4], [5]. The Schröndiger Equation for the Hydrogen Atom is very similar to other 

atoms with one electron or Hydrogenids as Ionized Helium.  This approach is possible to apply to all 

those atoms with one electron but the Schröndiger equation is possible to apply for any configuration or 

electron number of the atom.   

For the Hydrogen Atom, it is necessary to know the potential energy.  The solution of the radial equation 

depends of the potential energy function: 

V(r)=−k
Ze2

r
     r=√x2+y2+z2 

Ze:  electric charge of the nucleus   k=1/(4πεo) 

It is possible to use the reduced mass:  µ=m(
M

m+M
) 

−
(
h

2π
)
2

2µ
(
∂2

∂x2
φ+

∂2

∂y2
φ+

∂2

∂z2
φ)−k

Ze2

r
φ=Eφ  

By solving this equation in spherical coordinates, it is possible to obtain the radial form of the equation 

[16]: 

−
(
h

2π
)
2

2µ
[
1

𝑟2
∂

∂r
(𝑟2

∂ψ

∂r
]−

(
h

2π
)
2

2µr2
[
1

𝑠𝑒𝑛𝜃

∂

∂θ
(𝑠𝑒𝑛𝜃

∂ψ

∂θ
)+

1

𝑠𝑒𝑛2𝜃

∂2ψ

∂Φ2
]+V(r)ψ=Eψ  

where the general solution is ψ(r,θ,Φ)=R(r)f(θ)g(Φ)=R(r)Y(θ,Φ) 

𝐿𝑜𝑝
2=−(

h

2π
)
2

[
1

𝑠𝑒𝑛𝜃

∂

∂θ
(𝑠𝑒𝑛𝜃

∂

∂θ
)+

1

𝑠𝑒𝑛2𝜃

∂2

∂Φ2
]  

−
(
h

2π
)
2

2µ
[
1

𝑟2
∂

∂r
(𝑟2

∂ψ

∂r
]+

𝐿𝑜𝑝
2

2µ𝑟2
ψ+V(r)ψ=Eψ     ψ(r,θ,Φ)=R(r)Y(θ,Φ) 

−
(
h

2π
)
2

2µr2
Y(θ,Φ)

d(r2R)́

dr
+

R

2µr2
𝐿𝑜𝑝

2Y(θ,Φ)+V(r)R(r)Y(θ,Φ)=ER(r)Y(θ,Φ)  

By dividing for R(r)Y(θ,Φ), it is obtained: 

1

(
h

2π
)
2
Y(θ,Φ)

Lop
2 Y(θ,Φ)=

2µr2

(
h

2π
)
2[E−V(r)]+

1

R

d(r2R)́

dr
  

Each side of the equation must be equal to a  constant α because the left side depends of θ and Φ and the 

right side depends of r. 
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Lop
2 Y(θ,Φ)=𝛼(

h

2π
)
2

Y(θ,Φ)  

This is the equation for  eigenvalues for Lop
2.  There is the solution only for certain values of α.  Then the 

square of the angular momentum is quantized.  The values of α which are solutions for the Lop
2 are: 

0,2,6,12,… 

α=l(l+1)     l=0,1,2,3,…. 

L=√l(l+1) 
h

2π
  

Ylm(θ,Φ)=e
imΦfl|m|(θ)     fl|m|(θ)  : function of Legendre 

m=ml   m=0, ±1, ±2, …..,±l 

−
(
h

2π
)
2

2µr2

d(r2R)́

dr
+[
α(
h

2π
)
2

2µr2
+V(r)]R=ER  

This is the radial equation.  It is possible to replace the value of α and the potential function at the radial 

equation and it is obtained: 

−
(
h

2π
)
2

2µr2

d(r2R)́

dr
+[
l(l+1)(

h

2π
)
2

2µr2
−k

Ze2

r
]R=ER  

If the total energy is positive the electron is not bounded to the atom.  Then, we consider only negative 

energy with V(r)>E for high values of r.  There are solutions with good behavior only for certain values 

of E. For other values of E, R has the tendency to ∞ for high values of r [16].   The solution is as follows:  

ψ(r,θ,Φ)=R(r)f(θ)g(Φ)=R(r)Ylm(θ,Φ). 

It is possible to consider the solution for the lower energy at the base level:  l=0. It is the value of l for the 

lower angular momentum and kinetic energy [16]. It is possible the parameter λ in the next form because 

of the negative energy:  𝜆2=−
2µ𝐸

(
h

2π
)
2. 

1

r2

d(r2R)́

dr
+
2µkZe2

(
h

2π
)
2

R

r
=λ2R  

R´+́(
2R´

r
+
2µkZe2

(
h

2π
)
2

R

r
)=λ2R  

The solution must have the tendency to zero when r has the tendency to ∞.  For r with very high value, the 

term in parenthesis has very low value and the equation can be written in the next form:  R´´ ≈λ2R. 
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The functions 𝑒−𝜆𝑟 and 𝑒+𝜆𝑟 satisfies the equation.  If λ is positive, 𝑒+𝜆𝑟 is ∞ for high values of r.  Then, 

for high values of r, the solution is 𝑒−𝜆𝑟. 

R≈e−λr  

It is the solution for all values of r if the term in parenthesis at the equation has the zero value.  It occurs 

for a particular value of λ.   

R´=-λe−λr=-λR 

−
2λR

r
+
2µkZe2

(
h

2π
)
2

R

r
=0  

𝜆=
µkZe2

(
h

2π
)
2=

𝑍

𝑎𝑜
              ao=

εoh
2

πµe2
=0,529 A: Bohr radius       k=1/(4πεo) 

λ2=−
2µE

(
h

2π
)
2      E=−

(
h

2π
)
2
λ2

2µ
   

E=−
Z2(ke2)2µ

2(
h

2π
)
2 =-Z

2
E1       E1=

1

2
(
ke2

h

2π
c
)2µc2≈13,6 eV  

E=−
µZ2e4

8εo2n2h2
   (as the Bohr Theory for the energy levels) 

En=−
Z2E1

n2
         E1≈13,6 eV 

λ=
Z

nao
          R=Noe

−λr    R=Noe
−Zr/nao where the constant No is obtained by normalization. 

The general solution for the radial function is as follows: 

Rnl=e
−
Zr

nao(
2Zr

nao
)lLnl

2Zr

nao
  

where Lnl is the Laguerre polynomials.  

The function for the Hydrogen atom is as follows: 

ψnlm(r,θ,Φ)=CnlmRnl(r)fl|m|(θ)e
imΦ   where m=ml 

 fl|m|(θ) are the Legendre functions and Cnlm are the normalization constants.   

𝐸𝑜𝑝ψnlm(r,θ,Φ)=−
Z2E1

n2
ψnlm(r,θ,Φ)  

Lop
2 ψnlm(r,θ,Φ)=𝑙(𝑙+1)(

h

2π
)
2

ψnlm(r,θ,Φ)  



 

   

Mediterranean Journal of Basic and Applied Sciences (MJBAS) 

Volume 4, Issue 4, Pages 18-113, October-December 2020 

ISSN: 2581-5059                                                www.mjbas.com 

96 

Lz,op ψnlm(r,θ,Φ)=𝑚(
h

2π
)
2

ψnlm(r,θ,Φ)  

The quantum number n, l and m are as follows: 

n=1,2,3,….  l=0,1,2,…..(n-1)   m=-l,-l+1,….,0,1,2,….,+l 

The energy depends only of the number n but some functions has the same value of energy.  It .   

The lowest energy has the value of n=1 l=0 and m=0.  The wave function for the Hydrogen Atom is 

spherical with symmetry [16].  It is only function of the radius between the electron and the proton [5].  It 

is given by  the next formula:   :  ψ100(r,θ,Φ)=C100e
−
Zr

ao 

The constant C100 is obtained by normalization where φ is a probabilistic function: ∫φ2dV=1      

 ∫ψ∗ψdV=∭ ψ∗ψr2senθdθdrdΦ=1  in spherical coordinates 

The angle integration gives the value of 4π: dV=4πr2dr.  The integration over r gives the next result: 

C100=
1

√𝜋
(
𝑍

𝑎𝑜
)3/2 

φ=√
𝑍3

πao3
e−Zr/ao  

The probability to find the electron inside of the volume dV is ψ∗ψ dV.  The probability to find the 

electron between r and r+dr where dV=4π r2 dr is obtained as follows:  

P(r)dr=ψ∗ψ4πr2dr=4πr2C100
2e
−
2Zr

aodr 

P(r) has the maximum value in r=ao/Z which is the Bohr radius.   

The expected value of r can be calculated.  It is as follows: 

<r>=∫rφ2dV=
4

ao3
∫ r3e−2r/aodr=

3

2

∞

0
ao         φ

2=ψ∗ψ  

The Bohr radius is obtained with the calculation of r
-1

 as follows: 

<r−1>=∫
1

r
φ2dV=

4

ao3
∫ re−2r/aodr=

1

ao

∞

0
   r=ao 

The probability to find the electron inside of the nucleus of radius Ro is given by the next formula: 

P=∫ φ2dV=
1

πao3

Ro

0
∫ 4πr2
Ro

o
e−2r/aodr≅

4

3

Ro
3

ao3
  

where Ro is the radius of the Hydrogen nucleus: 10
-15

 m and ao=0,528 *10
-10

 m 

Thus, there is a very small probability to find the electron at the nucleus. 
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At the Bohr model, the electron remains in a definite orbit with r=ao.  At the Schröndiger model, the 

electron can be in any value from 0 to ∞ but the radius most probable is ao.  The probability to find the 

electron in other radius is very low.  The electron is considered as a charged cloud with charge: eψ∗ψ 

[16].  At the Bohr model the angular momentum is 
h

2π
 (n=1) L=𝑛

h

2π
 but at the Schröndiger model the 

angular momentum is zero (l=0, n=1) L=√l(l+1) 
h

2π
. 

For the first excited state:  n=2, l=0, l=1.  For l=0, m=0, the function is spherical: 

ψ200=C200(2−
𝑍𝑟

𝑎𝑜
)e
−
Zr

2ao  

For l=1, m=0, m=+1, m=-1.  The functions are as follows: 

ψ210=C210(
𝑍𝑟

𝑎𝑜
)e
−
Zr

2ao𝑐𝑜𝑠𝜃  

ψ21±1=C211(
𝑍𝑟

𝑎𝑜
)e
−
Zr

2ao𝑠𝑒𝑛𝜃e±iΦ  

In resume, at this theory,  it is no necessary to use postulates ad hoc or patches to obtain the quantization 

energy.   It is obtained directly from the Schröndiger Equation.  Also, the Schröndiger Theory doesn´t use 

classic concepts.  Besides, the magnitude of the angular momentum is quantized:                            L=

√l(l+1) 
h

2π
     l=0,1,2,3,…..n-1 

For l very large, the quantization of the angular momentum of the Bohr Model: L=l 
h

2π
  is in accordance 

with the Schröndiger Theory. 

The component of the angular momentum in the direction of the external magnetic field or z direction is 

quantized:  Lz=ml
h

2π
   ml=0, ±1, ±2, ……,±l 

At the Normal Zeeman Effect and the Anomale Zeeman Effect, the electron has additional energy 

sub-levels due the interaction between the orbital magnetic dipole momentum and the magnetic dipole 

momentum of the spin with the external magnetic field.   

They are additional interactions to the potential interaction V of the electron with the nucleus. 

The magnitude of the angular momentum of the spin is also quantized: 

Ls=√s(s+1) 
h

2π
     s=1/2:  spin orbital number 

For very large s:  Ls=s 
h

2π
      s=

1

2
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The component of the angular momentum of the spin in the direction of the external magnetic field or z 

direction is also quantized: 

Lsz=ms
h

2π
   ms=±1/2  ms:  spin number 

The spin is the result of applying Relativity Theory to the electron.  It was done by Dirac in 1928.  Then, 

the analogy of the electron as a sphere in rotation is not exact but it serves as model to explain the 

quantization of the spin.  Besides, the spin has not been observed experimentally.  It is only possible to 

say that the spin is due an intrinsic motion of the electron [4], [5]. 

9. An electron orbiting the nucleus 

The mass of the electron is m and the mass of the nucleus is M.  During the first research about the atom, 

the Rutherford Model was represented as the electron moves around the nucleus in a circular motion with 

radius R.  After, the motion of the electron was represented as an ellipse as the Somerfield Model has 

established [4], [5], [6].  The nucleus is at the focus of the ellipse as the sun in one focus at the Planetary 

System [4], [5], [7], [8].  There is a strong analogy between the Planetary System and the Atom System at 

this model. 

 

Fig.32. An electron orbiting the nucleus due the Electric Force 

The electrical force between the electron and the nucleus gives out the Electrical Potential Energy.  At the 

Planetary System, the gravitational force between the planets and the sun gives out the Gravitational 

Potential Energy.  Besides, the electron only emits electromagnetic energy or photons at the jump from 

one stationary orbit to another stationary orbit at the atom.  Then, the mass of the electron decreases due 

the emission of the electromagnetic energy.  As result of it, the electron changes its stationary orbit by 

decreasing the radius R with the nucleus.  Afterwards, the electron starts to move in a circular or elliptical 

motion (rotational motion) around the nucleus due the initial velocity of the electron but without the 

emission of electromagnetic energy.   

9.1. Variant Mass for the electron due the Electrical Potential 

dU=- dW         dW=FdR          F=−k
𝑒2

R2
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The electrical potential energy is equal to the negative work done by the electrical force because it is 

necessary to gives energy or to do work on the system to separate the electron from the nucleus.   

c2dm=dU                            c2dm=k
e2

R2
dR    

c2∫ dm=k
m

mo
e2∫

dR

R2

Rf
Ri

         c
2
(m-mo)= - ke

2(
1

Rf
−
1

Ri
) 

m=mo - 
ke2

c2
(
1

Rf
−
1

Ri
)                        mc2=moc

2−ke2(
1

Rf
−
1

Ri
)   

mc2=moc
2−

ke2

R
    electron mass-energy due the electrical potential   

c2dm=dV    and by doing the integration: 

mc
2
-moc

2
=V, then   mc

2
= moc

2
+V     E= moc

2
+V   

which is the formula for the Electrical Potential Energy:  V=mc
2
-moc

2
 

V=mc2−moc
2=− ke2(

1

Rf
−
1

Ri
)    

V=−
ke2

R
       classical electrical potential energy 

U=−
GMmo

R
  classical approach for the gravitational potential energy 

V increases (less negative) when R increases.  If we want to separate the electron m from the nucleus M, 

it is necessary to apply an external force or to gives an additional energy to the system.  The work done by 

this force produces an increase of the electrical potential energy.   

Part of the work done by this force or the additional energy given produces a decrease of the kinetic 

energy and the electron has less velocity. Nevertheless, the electron has restricted positions or radius to 

do the transitions from one orbit to another until it get the stationary orbit with stationary energy level.  At 

these stationary orbits or states, the electron doesn´t emit electromagnetic energy or photons.   

The electron only does the emission of the electromagnetic energy or photons at the transition from one 

orbit to another. 

V decreases (more negative) when R decreases.  If we want to reduce the distance of the electron m and 

the nucleus M by doing a transition from one orbit to another orbit, it is necessary that the electron m 

emits energy (emission as electromagnetic energy or photons) at this transition.   

The emission of this energy produces a decrease of the electrical potential energy (more negative).  It 

produces also an increase of the kinetic energy and the electron has more velocity.   
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9.2. Variant Mass for the Electron due to the Kinetic Energy 

The change of the kinetic energy of the particle (electron) dK is transformed in an increasing of the 

relativistic mass-energy dE=c
2
dm (by using the famous formula for the energy-mass for every particle:  

E=mc
2
).  Therefore, it is obtained:  dE=dK    c2dm=dK  

dK=dW=Fds=(
dp

dt
)ds=dp(

ds

dt
)=d(mv)v=v2dm+mvdv  

By replacing this expression in dK, it is obtained: 

c2dm=v2dm+mvdv      c2dm=v2dm+mvdv   

(c2−v2)dm=mvdv        
dm

m
=

v

(c2−v2)
dv  

By doing the respective integration, it is obtained: 

∫
dm

m

m

mo
=∫−

−2v

2(c2−v2)
dv

v

0
  

∫
dm

m

m

mo
=∫ −

du

2u

c2−v2

c2
        u=c

2
-v

2
    du=-2vdv 

ln(m)-ln(mo)=(-1/2)[ln(c
2
-v

2
)-ln(c

2
)] 

ln(m/mo)=ln[(c
2
-v

2
)/ c

2
]

-1/2
 

m/mo=[(c
2
-v

2
)/ c

2
]

-1/2
 

m=
mo

√(1−
v2

c2
)

           relativistic electron mass due the kinetic energy 

At this formula, when the velocity v is increasing, the relativistic mass m is increasing.  If v approximates 

to the light velocity v≈c, then the value of mass is approaching infinity. Then, the velocity v can never get 

the light velocity because it implies that the mass increases to ∞.   

m=mo(1+
1

2

v2

c2
+
3

8

v4

c4
+⋯)      m=mo(1+

1

2

v2

c2
)       v<<c        

mc2=moc
2+

1

2
mov

2  classic approach for the mass of the electron 

The electrical force is equal to the centrifugal force: 

ke2

R2
=mo

v2

R
               

ke2

2R
=
1

2
mov

2 

mc2=moc
2+

ke2

2R
      classic approach for the mass of the electron 

The kinetic formula is obtained as follows:   
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c2dm=dK  

and by doing the integration: 

mc
2
-moc

2
=K, then   mc

2
= moc

2
+K     E= moc

2
+K   

which is the formula for the kinetic energy:  K=mc
2
-moc

2
 

K=moc
2(

1

√(1−
v2

c2
)

−1)         K=moc
2((1−

v2

c2
)−1/2−1) 

For higher velocities (when v is approaching to c), it is necessary an infinity kinetic energy to bring the 

particle to those velocities. If the particle decreases the radius orbit, the velocity and the kinetic energy 

increases. Nevertheless, there is a limit of the velocity for the particle which is the light velocity.   

For very low velocities, it is obtained: 

(1−
v2

c2
)−1/2=1+

1

2

v2

c2
+
3

8

v4

c4
+..    K=moc

2(1+
1

2

v2

c2
+
3

8

v4

c4
+⋯−1) 

3

8

𝑣4

𝑐4
  and other terms are neglected for very low velocities  v<<c: 

K=
1

2
mov

2  kinetic energy for low velocities  

ke2

2R
=
1

2
mov

2  &  K=
ke2

2R
       kinetic energy for low velocities 

9.3. Total Variant Mass for an electron which emits Electromagnetic Energy:  Classical Approach 

moc
2−mc2=

ke2

R
    electrical potential energy  

moc
2−mc2=−

ke2

2R
    kinetic energy 

Therefore, the total lost mass is given by adding the contribution of the electrical potential energy with 

the kinetic contribution to the mass. 

moc
2−mc2=

ke2

R
−
ke2

2R
  

Δmc
2
=moc

2−mc2=
ke2

2R
     total decrease mass of the particle  

mc2=moc
2−

ke2

2R
    total mass of the particle:  classical approach 

The total variant energy is given by the same expression of the total decrease mass of the electron in an 

electrical field because of the Energy Mass Law E=mc
2
.  It is due that the total variant energy correspond 

to the bound energy of the system (electron-nucleus) which after is emitted as electromagnetic energy or 
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photons and corresponds to the decrease mass of the particle.  Therefore, it is obtained:   c2dm=dE     

mc
2
-moc

2
=E, then   mc

2
= moc

2
+E      

which is the formula for the total energy E:  E=mc
2
-moc

2
 

mc2=moc
2−

ke2

2R
      E= mc2−moc

2 

E=(−
ke2

2R
)  total bound energy of the electron at the atom 

Other form to obtain the formula is as follows:   

E=K+U 

E=
1

2
mv2−

ke2

R
        E=

ke2

2R
−
ke2

R
   

E=−
ke2

2R
   Total Bound Energy of the electron at the atom 

The total bound energy is negative and equal to the kinetic energy in absolute value for the case of 

circular orbits.  Also, the kinetic energy is positive and equal to the half of the electrical potential energy 

in absolute value.  This total bound energy corresponds to the value of the total decrease mass of the 

electron when it emits electromagnetic energy or photons at the atom. 

9.4. Formula development of the total mass of the electron at the electric potential of the nucleus and 

quantization formula 

c2dm=
dp

dt
ds+

ke2

R2
dR         c2dm=vdp+

ke2

R2
dR    v=ds/dt 

p=mv        m=p/v   The electrical force is equal to the centrifugal force: 

ke2

R2
=m

v2

R
                             

ke2

R2
=
pv

R
  

ke2

R
=pv                              −

ke2

R2
dR=pdv+vdp  

ke2

R2
dR=−pdv−vdp          c2d(

p

v
)=vdp−pdv−vdp  

c2d(
p

v
)=−pdv                    c2

vdp−pdv

v2
=−pdv  

−c2
dp

v
=p(1−

c2

v2
)dv         −c2

dp

p
=v(1−

c2

v2
)dv  

ln
p

po
=−((

v2−vo
2

2c2
)−(lnv−lnvo))    
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p

po
=
v

vo
e
−(
v2−vo

2

2c2
)
             p=mv     po=movo 

mv

movo
=
v

vo
e
−(
v2−vo

2

2c2
)
     

m=moe
−(
v2−vo

2

2c2
)
   total relativistic mass of the electron at the atom 

Δm=moc
2−mc2=moc

2(1−e
−(
v2−vo

2

2c2
)
)   total decrease mass of the electron at the atom 

If v
2
<<c

2
, then it is obtained for the classical case: 

e
−(
v2−vo

2

2c2
)
=1−(

v2−vo
2

2c2
)+

(
v2−vo

2

2c2
)
2

2!
+⋯  

(
v2−vo

2

2c2
)
2

2!
 and other terms are neglected 

𝑘𝑒2

𝑅2
=𝑚

𝑣2

𝑅
       

ke2

mR
=v2         m=mo(1−(

v2−vo
2

2c2
))     

(
v2−vo

2

2c2
)=

ke2

2moc2
(
1

R
−
1

Ro
)    Rf=R    Ri=Ro 

m=mo(1−
ke2

2moc2
(
1

R
−
1

Ro
))   mass of the electron:  classical approach 

moc
2−mc2=

ke2

2
(
1

R
−
1

Ro
)   total decrease mass:  classical approach 

moc
2−mc2=

ke2

2R
   total decrease mass of the electron: classical approach  

It is in accordance with the total energy for the electron (bound energy) at the atom for the classical 

approach which is equal to the decrease mass of the electron and equal to the electromagnetic radiation 

emitted by the electron at the atom. The electron at the atom only can take restricted positions which are 

explained by quantum mechanics.   

For the total energy of the electron or bound energy, it is obtained:   

E= mc2−moc
2            m=moe

−(
v2−vo

2

2c2
)
     

E=moc
2(e
−(
v2−vo

2

2c2
)
−1)   total relativistic energy for the electron in the atom 

If v
2
<<c

2
, then it is obtained for the classic case: 

e
−(
v2−vo

2

2c2
)
=1−(

v2−vo
2

2c2
)+

(
v2−vo

2

2c2
)
2

2!
+⋯  
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(
v2−vo

2

2c2
)
2

2!
 and other terms are neglected 

E= − mo(
v2−vo

2

2
)    classical approach 

ke2

R2
=m

v2

R
       

ke2

mR
=v2         (

v2−vo
2

2
)=

ke2

2mo
(
1

R
−
1

Ro
)  

E= − mo(
ke2

2mo
(
1

R
−
1

Ro
))          E=−(

ke2

2
(
1

R
−
1

Ro
))  

E= −(
ke2

2R
)  total energy for the electron at the atom or bound energy 

The kinetic energy for the electron at the atom for the classical approach is the same formula but in 

absolute value:  K= (
ke2

2R
) 

The total lost mass energy of the electron at the atom is given by the formula demonstrated and it is equal 

in absolute value to the total bound energy of the system which is emitted as electromagnetic energy 

when the electron does the transition from one orbit to another orbit with fewer radiuses.  The emission of 

the total electromagnetic energy E produces a decrease mass of the particle: Δm=E/c
2
.   

If Rf<Ri   ΔE= Ef−Ei=(−
ke2

2Rf
)−(−

ke2

2Ri
)   is negative, it is given out energy which means that the 

electron losses mass, the electron increases the kinetic energy and the velocity but decreases the electrical 

potential energy (more negative).  Part of the lost energy (electromagnetic energy emission or photon) is 

given out by decreasing the potential energy and part by increasing the kinetic energy.   

If Rf>Ri   ΔE is positive, which means that additional energy is given to the electron or additional work is 

done on the system, the electron decreases the kinetic energy and the velocity but increases the potential 

energy (less negative).  Part of the work or additional energy is used to increase the potential energy and 

part to diminish the kinetic energy.   

Therefore, the total energy for the electron at the atom for the classical approach is:  E= −(
ke2

2R
)   

Then, it is possible to obtain all the quantization formula as it was done before: 

If the radiation is emitted in the transition from the initial state i to the final state f (for example from n=2 

to n=1), the difference energy of those levels is as follows:  ΔE=Ei-Ef      Ei>Ef  (Ei is less negative than Ef) 

ΔE=−(
ke2

2
(
1

Ri
−
1

Rf
))      ΔE=(

ke2

2
(
1

R
−
1

Ro
))      Ri=Ro     Rf=R 

The formula of Balmer Series is as follows: 
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1

λ
=R(

1

n2́
−
1

n2
)   n>n´   R=1.099731*10

7
 m

-1
:  R=

me4

8εo2ch3
  Rydberg Constant   

f

c
=R(

1

n2́
−
1

n2
)     f=cR(

1

n2́
−
1

n2
)    f=

me4

8εo2h3
(
1

n2́
−
1

n2
)         λ=c/f       

This formula was obtained from the quantization of the radius by using De Broglie wave-particle duality  

(λ=h/mv) and the adjustment of the wave of the electron at the orbit of the atom (2πr=λ) and the formula 

ΔE=hf for the energy emission of the electron at the atom. 

Because ΔE=hf, it is possible to obtain the formula of energy: 

ΔE=hf=
mhe4

8εo2h3
(
1

n2́
−
1

n2
)         ΔE=

me4

8εo2h2
(
1

n2́
−
1

n2
)      

This formula can be compared with the mass formula development for the classic approach:   

ΔE=(
ke2

2
(
1

R
−
1

Ro
))  

me4

8εo2h2
(
1

n2́
−
1

n2
)=(

ke2

2
(
1

R
−
1

Ro
))       

n:  main quantum number of the initial state with radius Ro 

n´:  main quantum number of the final state with radius R 

e2

4πεo(2)(
εoh
2

πme2
)
(
1

n2́
−
1

n2
)=(

ke2

2
(
1

R
−
1

Ro
))      k=1/(4π𝜀𝑜)   

ke2

2
(

1

(
εoh
2

πme2
)n2́
−

1

(
εoh
2

πme2
)n2
)=(

ke2

2
(
1

R
−
1

Ro
))  

It is concluded that the radius must be proportional to the number n
2
.   

R= ao n´
2

    Ro= ao n
2
 

R=aon
2      ao=

εoh
2

πme2
    ao=0,529*10

-10
 m=0,529 A       Bohr radius     

Besides, It is known that the radius is proportional to the main quantum number and the Bohr radius from 

the quantization of the radius by using the De Broglie wave-particle duality and the adjustment of the 

wave of the electron at the orbit of the atom:  R=
εoh

2

πme2
n2.  

The Constant of Rydberg is obtained as follows: 

f=cR(
1

n2́
−
1

n2
)         ΔE=hf=chR(

1

n2́
−
1

n2
)    ΔE=(

ke2

2ao
(
1

n2́
−
1

n2
))  
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chR(
1

n2́
−
1

n2
)=(

ke2

2ao
(
1

n2́
−
1

n2
))       chR=

ke2

2ao
  

R=
ke2

2chao
      h:  Planck Constant  ao=

εoh
2

πme2
    k=1/(4π𝜀𝑜)  c: light velocity 

R=
me4

8εo2ch3
      R=1.0997313414*10

7
 m

-1
   Rydberg Constant 

Besides, if we suppose that the Rydberg Constant is known from the experimental result of Balmer, then 

the Planck Constant is possible to obtain: 

chR=
ke2

2ao
      h=

ke2

2aocR
      ao=

εoh
2

πme2
 

k=1/(4πεo)=9*10
9
 N m

2
/C

2
     εo:  vacuum permittivity=8,85*10

-12
  Farad/m    

ao:  Bohr radius=5,3 *10
-11

 m   c:  light velocity=3*10
8
 m/s             

e:  electron charge=1,6*10
-19 

Coulomb (C) 

R=1.097313414*10
7
 m

-1
:  Rydberg Constant 

By using those values, it is possible to obtain the Planck Constant: 

h=6,63*10
-34

 J-s           Planck Constant 

10. Ionization emission energy of the electrons at the Hydrogen Atom and the bound of Diatomic 

Molecules 

In order to test the mass development formula for the ionization emission energy of the electron for the 

Hydrogen atom, some calculation by using Quantum Mechanics are done.   

After, the mass results for both methods are compared. The formulas for velocity, radius and energy for 

an electron at the quantized atom[6] are as follows: 

v=
Ze2

2εonh
   r=

n2h2εo

πmoZe2
    E=

−z2e4mo

8εo2h2n2
  

Z:  atomic number of the atom      e:  charge of the electron 

εo:  vacuum permittivity                 h:  Planck constant 

n:  main quantum number, electron energy level, orbit of the electron 

mo:  rest mass of the electron 

The physical constants are given in the next table: 
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h 6,63*10
-34

 J-s

εo 8,85*10
-12

 Farad/m

π 3,1416

mo 9,11*10-31 kg

e 1,6*10
-19

 C

ro 0,528
 

Table 3: Physical constants 

First energy level Hydrogen atom:  -13,6  eV    n=1 

Second energy level Hydrogen atom:  -3,4 eV   n=2 

Therefore, if the electron jumps from the first level to the second level, it must gain an energy of 10,2 eV 

(energy difference of the two levels).  

If the electron jumps from the second level to the first level, it must lose and energy of 10,2 eV. If the 

electron jumps from the second level to the first level, the mass of the electron must lose this equivalent 

mass-energy.   And the lost mass of the electron (which is equivalent to the mass-energy of the 

electromagnetic radiation emitted) occurs during the transition from the second level to the first level 

converted as kinetic energy.  In mathematical formulation, it is as follows:   (mo-m)c
2
=hf=K   

E=hf:   energy of the photon emitted (electromagnetic radiation). It is in coincidence with the 

development formula for the energy emission of the electron at the atom.  Thus, we are going to proceed 

to test the mass formula:  if the electron at the first level (n=1) leaves from the atom, then the ionizing 

energy is equal to -13,6 eV.  It corresponds to the energy emission of the electron.  Therefore, the mass of 

the electron after losing this mass-energy emission is:   mc
2
=moc

2
-hf 

mc
2
=511875-13,6   =511861,4 eV 

For other hand, the mass electron calculation with the mass development formula is as follows: 

m=moe
−(
v2

2c2
)
    

The velocity is given by this formula: 

v=
Ze2

2εonh
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It is interesting to mention that this formula doesn’t include the mass of the particle.  So, the orbits have 

specific values for the particle independent of the mass of it.  By replacing the values for Z (Z=1), e, εo, n 

(n=1), h, it is obtained: 

v=2181489,72 m/s.  By replacing this value at the mass formula, it is achieved: 

mc
2
=511861,4 eV  

It is the same value that the last calculation by using quantum mechanics.  It is possible to do the same for 

the second level of the Hydrogen atom. The ionizing energy for electron at the second level is:  -3,4 eV. 

If the electron at the second level (n=2) leaves from the atom, the ionizing energy is equal to -3,4 eV.  It 

corresponds to the energy emission of the electron. Therefore, the mass of the electron after losing this 

mass-energy emission is:  mc
2
=moc

2
-hf 

mc
2
=511875-3,4 

      =511871,6 eV 

For other hand, the mass electron calculation with the mass development formula is as follows: 

m=moe
−(
v2

2c2
)
    

The velocity is given by this formula: 

v=
Ze2

2εonh
   

By replacing the values for Z (Z=1), e, εo, n (n=2), h, it is obtained: 

v=1090744,859 m/s 

By replacing this value at the mass formula, it is achieved: 

mc
2
=511871,6 eV   

n v r E=hf Ecinetica (ionization energy)
mc

2
=moc

2
-hf

1 2181489,72 5,3096E-11 -13,54798602 511861,452 511861,4671

2 1090744,86 2,1238E-10 -3,386996504 511871,613 511871,6167

3 727163,24 4,7786E-10 -1,50533178 511873,4947 511873,4963

4 545372,43 8,4954E-10 -0,846749126 511874,1533 511874,1542

5 436297,944 1,3274E-09 -0,541919441 511874,4581 511874,4587

6 363581,62 1,9115E-09 -0,376332945 511874,6237 511874,6241

7 311641,388 2,6017E-09 -0,276489511 511874,7235 511874,7238 

Table 4:  Values of the velocities, radius, energy of the ionization for the different levels of energy of the 

hydrogen atom.  Also, it is showed the mass of the electron after the emission of the electromagnetic 

radiation by using quantum mechanics and for the development formula of the variant mass 
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It is the same value that the last calculation by using quantum mechanics.   It is showed at the next table 

the values of the velocities, radius, energy of the ionization for the different levels of energy of the 

hydrogen atom.  Also, it is showed the mass of the electron after the emission of the electromagnetic 

radiation by using quantum mechanics (mc
2
=moc

2
-hf) and for the formula of the variant mass for the 

electron at the atom after the energy emission:   m=moe
−(
v2

2c2
)
 .  It is possible to confirm the accuracy of 

the formula demonstrated theoretically.   Besides, the table showed that when the velocity decreases (at 

the different levels of energy of the Hydrogen atom) the mass increases.  Also, levels which are closest to 

the nucleus have higher velocities than the farthest. 

Bound of Diatomic Molecules 

It is possible to do the analysis for the center of mass (CM) as follows: 

 

Fig.33. Center of mass for diatomic molecules 

mr=MR             R=(m/M)r      r´=r+R          r´= r+(m/M)r          

r´=
M+m

M
r      r=

𝑀

𝑀+𝑚
r´        

m
v2

r
=
kZe2

r2́
              

v2=r
kZe2

mr2́
=

M

M+m
r´
kZe2

mr2́
=
kZe2

2𝑚𝑜r´
     M=m=mo 

v=√𝑘
𝑍𝑒2

2𝑚𝑜𝑟
  

Firstly, we consider the Hydrogen molecule H2. The two electrons can be shared if the spins are in 

opposite direction.  The molecule of H2 is more stable than the molecule of ionized hydrogen H2
+
.   

The mass of H2 is:  mo=1,67353 *10
-27

 kg.  

The nuclear separation is:  r=0.74 A (1 A=10
-10

 m). 

v=√k
Ze2

2𝑚𝑜r
   k=

1

4𝜋𝜖𝑜
=9*10

9
 Nm

2
/C

2
   Z=1 e=1,6*10

-19
 C 
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v=30499, 52739 m/s 

m=moe
−(
v2

2c2
)
  where c is the light velocity c=3*10

8
 m/s. 

Δmc
2
=(moe

−(
v2

2c2
)
)c

2
- moc

2
 

Δmc
2
=4,8648 eV 

The experimental value for the bond energy for the Hydrogen molecule H2 is 4,72 eV. 

For the ionized hydrogen H2
+
, it is obtained: 

The mass of H2
+ 

is approximately:  mo=1,67353 *10
-27

 kg.  

The nuclear separation is:  r=1.06 A (1 A=10
-10

 m). 

The bound energy for the H2
+
 is less intense than for H2.  Therefore, the nuclear separation is higher for 

H2
+
 than for H2. 

v=√k
Ze2

2𝑚𝑜r
   k=

1

4𝜋𝜖𝑜
=9*10

9
 Nm

2
/C

2
   Z=1 e=1,6*10

-19
 C 

v=23851,53228 m/s 

m=moe
−(
v2

2c2
)
  where c is the light velocity c=3*10

8
 m/s 

Δmc
2
=(moe

−(
v2

2c2
)
)c

2
- moc

2
 

Δmc
2
=2,9752064 eV 

The experimental value for the bond energy for the Ionized Hydrogen molecule H2
+ 

is 2,65 eV. The 

bound energy for H2 is not the double of the bound energy for H2
+
, because the repulsion between the 

electrons of the H2 decrease the bound from 5.3 eV to 4.72 eV and the distance is 0,74 A instead of 0.53 

A which is the nuclear separation of H2
+
 divided by 2:  1.06 A / 2. 

For the O2, it is obtained: 

The mass of O2 is:  mo=2,77 *10
-26

 kg.  

The nuclear separation is:  r=1.21 A (1 A=10
-10

 m). 

v=√k
Ze2

2𝑚𝑜r
   k=

1

4𝜋𝜖𝑜
=9*10

9
 Nm

2
/C

2
   Z=1 e=1,6*10

-19
 C 

v=5862,6459,81 m/s 
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m=moe
−(
v2

2c2
)
  where c is the light velocity c=3*10

8
 m/s 

Δmc
2
=(moe

−(
v2

2c2
)
)c

2
- moc

2
 

Δmc
2
=2,9752083 eV 

It is possible to calculate the rotation frequency w for the O2: 

L=Iw≈
ℎ

2𝜋
 

w≈
h

2πI
 

I=2mo(r/2)
2
=2,0277*10

-46
 kg m

2
 

By replacing the value of the Planck constant h, it is obtained: 

w=5,20*10
11

 Rad/s 

It is in accordance with the experimental measured for the rotation frequency.  The rotation frequency is 

lower than the vibration frequency which is in the order of 10
13

 Hz.   

11. Conclusions 

At this research, firstly it is demonstrated the research about the blackbody radiation of Planck, the 

corpuscular behavior of the radiation (Photoelectric and Compton Effect, Pair Production, Fluorescence, 

Moseley Plot), the spectral lines of Balmer, the research at the atom of Brown, Rutherford, Bohr, 

Schröndiger, Heisenberg with the all development of the quantum mechanics, the quantum numbers and 

atoms with more than one electron. Besides, it is explained why the electron doesn´t radiate energy as a 

particle and a wave and why the electron has restricted radius for the motion at the atom.   Also, it is 

demonstrated the wave-particle duality of De Broglie and the Heisenberg Uncertainty Principle, 

Diffraction by using a Fourier Approach and Interference Double Slit Experiment by using the wave 

behavior of the electron.  It is also demonstrated the energy levels for the Hydrogen atom by using the 

Schröndiger Equation. 

Planck's great contribution (1901) consisted in proposing that the experimental results of the blackbody 

radiation could be obtained if the average energy was treated as a discrete variable instead of the 

continuous variable of classical physics [9].  The quantization of the energy of the electron oscillators of 

the blackbody cavity was a great advance for the atom research. 

Then Rutherford proposed a planetary system for the explanation of the experiment of Geiger and 

Marsden.  This experiment only can be explained if the nucleus is constituted by a nucleus of positive 
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charge with the electrons with negative charge moving around it at a large distance or radius respect to 

the nucleus [4], [5], [8].  But, the electrons will radiate electromagnetic energy in a continue form.  As 

consequence of it, the electrical force will put the electrons towards the core of the nucleus [4].  Besides, 

it will result in a continuous spectrum of energy emission of the electron and in an instability of the atom 

(atom collapse) and the matter in general.  But, it doesn´t occur in the reality:  there is a discrete spectrum 

of energy emission of the electron at the atom and there is stability at the atom.  Then, it was necessary to 

obtain other model to explain this fact.   

Bohr proposed a model with some postulates to solve the instability of the atom. At this article, it is 

explained the postulates of Bohr and the reasons for them by using De Broglie approach. Also, it is 

explained by using the development formula for the variant mass of the electron at the atom. Bohr 

postulated the quantization of the energy transition for the electrons at the atom and the quantization of 

the angular momentum.  Bohr could explain the atom stability (the no radiation for the electrons at the 

atom) with those postulates and obtain a formula for the quantization of the energy, velocity, radius, 

angular momentum, frequency and wavelength of the radiation emitted or absorbed.   

Later, the modern quantum physics could explain the postulates of Bohr and obtain the quantization 

formula for the energy and angular momentum at the stationary levels by applying the Schröndiger 

Theory (wave probabilistic theory) and Heisenberg Theory (matrix theory) [4], [5]. The duality 

wave-particle of De Broglie and the Heisenberg Uncertainty Principle were support for the development 

fo the modern quantum physics.  The stationary states or levels correspond to those functions which 

satisfy the Schröndiger Equation [4], [5].  The electron in an atom no excited is at rest.  Thus, it cannot 

radiate energy because it corresponds to a stationary level of the atom [4], [5].   

At this research, it is to demonstrated the discovery formula which describe exactly the variant mass of a 

charged particle as the electron at the atom which emits electromagnetic energy from one stationary level 

to other.  The formula is in agreement at the classic limit for the bound energy for the particle orbiting the 

nucleus at the classic limit. The results of the formula are compared with the ionization energy emission 

for the electron at the atom and the bound energy for the diatomic molecules. The results of the 

theoretical formula are in agreement with the experimental results with high accuracy. 
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